An emotion recognition method based on EWT-3D–CNN–BiLSTM-GRU-AT model

人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 卷积神经网络 脑电图 深度学习 信号(编程语言) 语音识别 心理学 生物化学 化学 精神科 基因 程序设计语言
作者
Muharrem Çelebi,Sıtkı Öztürk,Kaplan Kaplan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107954-107954 被引量:15
标识
DOI:10.1016/j.compbiomed.2024.107954
摘要

This has become a significant study area in recent years because of its use in brain-machine interaction (BMI). The robustness problem of emotion classification is one of the most basic approaches for improving the quality of emotion recognition systems. One of the two main branches of these approaches deals with the problem by extracting the features using manual engineering and the other is the famous artificial intelligence approach, which infers features of EEG data. This study proposes a novel method that considers the characteristic behavior of EEG recordings and based on the artificial intelligence method. The EEG signal is a noisy signal with a non-stationary and non-linear form. Using the Empirical Wavelet Transform (EWT) signal decomposition method, the signal's frequency components are obtained. Then, frequency-based features, linear and non-linear features are extracted. The resulting frequency-based, linear, and nonlinear features are mapped to the 2-D axis according to the positions of the EEG electrodes. By merging this 2-D images, 3-D images are constructed. In this way, the multichannel brain frequency of EEG recordings, spatial and temporal relationship are combined. Lastly, 3-D deep learning framework was constructed, which was combined with convolutional neural network (CNN), bidirectional long-short term memory (BiLSTM) and gated recurrent unit (GRU) with self-attention (AT). This model is named EWT-3D–CNN–BiLSTM-GRU-AT. As a result, we have created framework comprising handcrafted features generated and cascaded from state-of-the-art deep learning models. The framework is evaluated on the DEAP recordings based on the person-independent approach. The experimental findings demonstrate that the developed model can achieve classification accuracies of 90.57 % and 90.59 % for valence and arousal axes, respectively, for the DEAP database. Compared with existing cutting-edge emotion classification models, the proposed framework exhibits superior results for classifying human emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼儿发布了新的文献求助10
刚刚
1秒前
lzn发布了新的文献求助30
1秒前
yxm完成签到 ,获得积分10
1秒前
LZC完成签到,获得积分10
3秒前
小贺发布了新的文献求助10
3秒前
走不开不快乐完成签到,获得积分10
4秒前
任性的诗柳完成签到 ,获得积分10
4秒前
浮游应助旧梦采纳,获得30
6秒前
7秒前
鳗鱼柚子完成签到 ,获得积分10
7秒前
幸福台灯完成签到,获得积分10
7秒前
大模型应助998685采纳,获得10
8秒前
小浣熊完成签到,获得积分20
8秒前
orange完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助贤弟采纳,获得10
9秒前
9秒前
10秒前
10秒前
852应助完美的黎云采纳,获得10
10秒前
11秒前
Hello应助呆萌的忆山采纳,获得10
11秒前
13秒前
问123发布了新的文献求助10
13秒前
14秒前
14秒前
lotus完成签到,获得积分10
14秒前
在水一方应助乐观的海采纳,获得10
14秒前
happiness完成签到 ,获得积分10
15秒前
xxx发布了新的文献求助10
15秒前
15秒前
16秒前
melo完成签到,获得积分10
17秒前
隐形曼青应助清脆泥猴桃采纳,获得10
18秒前
没名字发布了新的文献求助10
18秒前
springwell发布了新的文献求助10
18秒前
浮游应助我热爱我的工作采纳,获得10
18秒前
自由如南完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104