Mobilization, self-expression or argument? A computational method for identifying language styles in political discussion on Twitter

论辩的 政治 风格(视觉艺术) 论证(复杂分析) 独创性 偏爱 社会化媒体 政治沟通 社会心理学 心理学 计算机科学 语言学 政治学 万维网 哲学 生物化学 化学 考古 创造力 法学 经济 历史 微观经济学
作者
Lingshu Hu
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:48 (4): 783-802
标识
DOI:10.1108/oir-10-2022-0545
摘要

Purpose This study develops a computational method to investigate the predominant language styles in political discussions on Twitter and their connections with users' online characteristics. Design/methodology/approach This study gathers a large Twitter dataset comprising political discussions across various topics from general users. It utilizes an unsupervised machine learning algorithm with pre-defined language features to detect language styles in political discussions on Twitter. Furthermore, it employs a multinomial model to explore the relationships between language styles and users' online characteristics. Findings Through the analysis of over 700,000 political tweets, this study identifies six language styles: mobilizing, self-expressive, argumentative, narrative, analytic and informational. Furthermore, by investigating the covariation between language styles and users' online characteristics, such as social connections, expressive desires and gender, this study reveals a preference for an informational style and an aversion to an argumentative style in political discussions. It also uncovers gender differences in language styles, with women being more likely to belong to the mobilizing group but less likely to belong to the analytic and informational groups. Practical implications This study provides insights into the psychological mechanisms and social statuses of users who adopt particular language styles. It assists political communicators in understanding their audience and tailoring their language to suit specific contexts and communication objectives. Social implications This study reveals gender differences in language styles, suggesting that women may have a heightened desire for social support in political discussions. It highlights that traditional gender disparities in politics might persist in online public spaces. Originality/value This study develops a computational methodology by combining cluster analysis with pre-defined linguistic features to categorize language styles. This approach integrates statistical algorithms with communication and linguistic theories, providing researchers with an unsupervised method for analyzing textual data. It focuses on detecting language styles rather than topics or themes in the text, complementing widely used text classification methods such as topic modeling. Additionally, this study explores the associations between language styles and the online characteristics of social media users in a political context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助吴军霄采纳,获得30
刚刚
无花果应助gzl采纳,获得10
刚刚
1秒前
韩嘉玺完成签到,获得积分10
1秒前
无情的rr发布了新的文献求助10
1秒前
沫哈完成签到,获得积分10
2秒前
wxyshare应助把握有度采纳,获得10
3秒前
4秒前
4秒前
王晗完成签到,获得积分20
5秒前
科研通AI6应助WN采纳,获得10
7秒前
Akim应助大气的砖家采纳,获得10
9秒前
Huaaaaaz发布了新的文献求助10
9秒前
xx发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
斯文败类应助米酒汤圆采纳,获得10
11秒前
秀丽小猫咪举报wsx求助涉嫌违规
12秒前
Jeff发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
16秒前
Huaaaaaz完成签到,获得积分20
16秒前
ChatGPT发布了新的文献求助10
17秒前
奋斗不斜发布了新的文献求助10
18秒前
echo发布了新的文献求助10
19秒前
隐形曼青应助sol采纳,获得10
19秒前
Michelle发布了新的文献求助10
20秒前
20秒前
852应助无情的rr采纳,获得10
20秒前
20秒前
21秒前
21秒前
科研通AI6应助xx采纳,获得10
22秒前
22秒前
无道则愚完成签到 ,获得积分10
24秒前
gzl发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989