Collapsible characteristics and prediction model of remodeled loess

黄土 岩土工程 地质学 计算机科学 地貌学
作者
Peipei Fan,Lingkai Zhang,Chong Shi,Yonggang Zhang,X. H. Ding,Hui Cheng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3445023/v1
摘要

Abstract The construction of the open channel projects in the northern Xinjiang region of China often involves traveling through vast areas of loess. The apparent collapsibility of loess is a major concern for engineers as it can lead to uneven deformation and failure of channel slopes. Collapsibility tests and scanning electron microscopy (SEM) analysis were conducted on remolded loess to comprehensively investigate the settlement and deformation mechanisms of collapsible loess from both macro- and micro-perspectives. Furthermore, a prediction model was developed and its applicability was verified. The test results indicated that with the increase of the vertical load, the collapsibility coefficient exhibited a trend of rapid increase followed by slow increase, and eventually stabilized. This trend satisfied a hyperbolic function relationship, which was negatively correlated with the changes of the water content and dry density. SEM analysis on the loess specimens confirmed that collapsible deformation involved a gradual transition from a shelf structure to a mosaic-colloid structure. Factors such as pore size and particle morphology were found to have significant influences on the collapsibility. For prediction purposes, statistical theory and machine learning algorithms were utilized to select variables such as dry density, moisture content, initial porosity ratio, and pressure test parameters. The GA-SVM model had higher accuracy and better applicability. The findings of the current study can provide valuable guide for the construction and management of water-conveyance projects in loess regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
之华发布了新的文献求助10
刚刚
Orange应助坏蛋猪油渣采纳,获得10
1秒前
Bdcy发布了新的文献求助10
1秒前
华仔应助段dwh采纳,获得10
1秒前
迷人的大地完成签到,获得积分10
1秒前
hututu应助RC_Wang采纳,获得10
1秒前
嘻嘻完成签到 ,获得积分10
2秒前
mugglea发布了新的文献求助10
3秒前
5秒前
无语发布了新的文献求助10
5秒前
江月年发布了新的文献求助10
5秒前
南山完成签到 ,获得积分10
7秒前
8秒前
震动的机器猫完成签到,获得积分20
9秒前
10秒前
毛毛完成签到 ,获得积分10
10秒前
10秒前
shelly完成签到,获得积分10
10秒前
10秒前
11秒前
江月年完成签到,获得积分10
11秒前
12秒前
Jiro完成签到,获得积分10
12秒前
DL完成签到 ,获得积分10
12秒前
camillelizhaohe完成签到,获得积分10
12秒前
13秒前
weilao发布了新的文献求助10
13秒前
orixero应助doranlou采纳,获得10
14秒前
隐形听双完成签到 ,获得积分10
14秒前
英俊的铭应助无语采纳,获得10
16秒前
简单半邪完成签到,获得积分10
17秒前
ju发布了新的文献求助10
17秒前
17秒前
木林山水发布了新的文献求助10
18秒前
北开水完成签到,获得积分10
19秒前
科研通AI6应助111231采纳,获得10
19秒前
段dwh发布了新的文献求助10
20秒前
无际的星空下完成签到,获得积分10
22秒前
23秒前
爆米花应助虚拟的凝海采纳,获得80
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497023
求助须知:如何正确求助?哪些是违规求助? 4594625
关于积分的说明 14445515
捐赠科研通 4527211
什么是DOI,文献DOI怎么找? 2480762
邀请新用户注册赠送积分活动 1465186
关于科研通互助平台的介绍 1437884