已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring the association between long-term MODIS aerosol and air pollutants data across the Northern Great Plains through machine learning analysis

埃指数 气溶胶 环境科学 空气质量指数 季风 生物质燃烧 气候学 大气科学 大气红外探测仪 污染物 矿物粉尘 气象学 地理 地质学 生态学 对流层 生物
作者
Neeraj Singh,Pradeep Kumar Verma,Arun Lal Srivastav,Sheo Prasad Shukla,Devendra Mohan,Markandeya Tiwari
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:921: 171117-171117 被引量:4
标识
DOI:10.1016/j.scitotenv.2024.171117
摘要

Aerosol optical depth (AOD) and Ångström exponent (AE) are the major environmental indicators to perceive air quality and the impact of aerosol on climate change and health as well as the global atmospheric conditions. In the present study, an average of AOD and AE data from Tera and Aqua satellites of MODIS sensors has been investigated over 7 years i.e., from 2016 to 2022, at four locations over Northern Great Plains. Both temporal and seasonal variations over the study periods have been investigated to understand the behavior of AOD and AE. Over the years, the highest AOD and AE were observed in winter season, varying from 0.75 to 1.17 and 1.30 to 1.63, respectively. During pre-monsoon season, increasing trend of AOD varying from 0.65 to 0.95 was observed from upper (New Delhi) to lower (Kolkata) Gangetic plain, however, during monsoon and post-monsoon a reverse trend varying from 0.85 to 0.65 has been observed. Seasonal and temporal aerosol characteristics have also been analyzed and it has been assessed that biomass burning was found to be the major contributor, followed by desert dust at all the locations except in Lucknow, where the second largest contributor was dust instead of desert dust. During season-wise analysis, biomass burning was also found to be as the major contributor at all the places in all the seasons except New Delhi and Lucknow, where dust was the major contributor during pre-monsoon. A boosting regression algorithm was done using machine learning to explore the relative influence of different atmospheric parameters and pollutants with PM2.5. Water vapor was assessed to have the maximum relative influence i.e., 51.66 % followed by CO (21.81 %). This study aims to help policy makers and decision makers better understand the correlation between different atmospheric components and pollutants and the contribution of different types of aerosols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赛达儿发布了新的文献求助10
1秒前
1秒前
2秒前
DreamMaker完成签到,获得积分10
2秒前
韦老虎发布了新的文献求助380
2秒前
zgjc完成签到,获得积分10
3秒前
3秒前
我是125完成签到,获得积分10
4秒前
whs完成签到 ,获得积分10
4秒前
辛勤的喉完成签到 ,获得积分10
4秒前
瓦尔基里发布了新的文献求助10
4秒前
等待含羞草完成签到 ,获得积分10
4秒前
靓丽紫真完成签到,获得积分10
5秒前
ZhaoY完成签到,获得积分10
5秒前
5秒前
时尚半仙完成签到 ,获得积分10
6秒前
GingerF完成签到,获得积分0
6秒前
San发布了新的文献求助10
6秒前
脑洞疼应助黄新雨采纳,获得10
7秒前
小超完成签到,获得积分10
7秒前
困敦发布了新的文献求助10
7秒前
小张完成签到 ,获得积分10
7秒前
什么芝士蛋糕完成签到 ,获得积分10
7秒前
7秒前
aaaasss完成签到,获得积分10
7秒前
zgjc发布了新的文献求助10
8秒前
8秒前
miracle完成签到 ,获得积分10
8秒前
忧郁完成签到 ,获得积分10
9秒前
小福同学完成签到 ,获得积分10
9秒前
无语发布了新的文献求助10
9秒前
花花菌完成签到,获得积分10
10秒前
小超发布了新的文献求助10
10秒前
科研通AI2S应助延胡索采纳,获得10
11秒前
笨笨的荧荧完成签到 ,获得积分10
11秒前
12秒前
程小柒完成签到 ,获得积分10
12秒前
cambridge完成签到,获得积分10
13秒前
木木完成签到,获得积分10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385140
求助须知:如何正确求助?哪些是违规求助? 4507821
关于积分的说明 14029039
捐赠科研通 4417666
什么是DOI,文献DOI怎么找? 2426643
邀请新用户注册赠送积分活动 1419324
关于科研通互助平台的介绍 1397721

今日热心研友

Criminology34
4
ho
2
浮游
20
Kei
2
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10