Exploring the boundaries of large-area nanoimprinting for mass production of AR waveguides
生产(经济)
材料科学
经济
宏观经济学
作者
Stefan H. Steiner,Frederik Bachhuber,Brian Bilenberg,Jan Matthijs ter Meulen,Erhan Ercan,Mariana V. Ballottin,Janne Simonen,Leo Peltomaa,Murat Deveci
标识
DOI:10.1117/12.3000398
摘要
Amidst the mixed news surrounding the feasibility of Augmented Reality (AR) smart glasses, the demand for commercially viable mass production of industry-standard optical waveguide combiners remains unwavering. Over the past two years, our consortium of companies has proposed a cost-effective and scalable manufacturing process for Surface Relief Grating (SRG) based waveguides, offering a comprehensive path from concept to fabrication through large-area nanoimprinting. This approach has garnered significant interest from both customers and partners associated with the participating companies. Our aim is to push beyond the established limits of large-area nanoimprinting. In this work we address the obstacles and latest advancements in maintaining imprint quality, fidelity and uniformity during large-area nanoimprinting. We demonstrate various building blocks that are crucial to manufacture high quality and cost-effective AR waveguides, such as the replication of slanted gratings and the possibility of low residual layer thickness using large-area nanoimprint lithography. We employ high refractive index materials, such as resin and glass (1.8, 1.9 and 2.0), and also explore a lighter and flatter version of the RealView 1.9 glass. Our primary objective is to demonstrate that large-area nanoimprinting not only presents itself as a novel method for high-volume manufacturing of SRG waveguides but also enables the production of challenging optics for AR smart glasses.