A multi-granularity hesitant fuzzy linguistic decision making VIKOR method based on entropy weight and information transformation

维柯法 粒度 计算机科学 模糊逻辑 转化(遗传学) 熵(时间箭头) 人工智能 自然语言处理 数据挖掘 化学 热力学 生物化学 物理 基因 操作系统
作者
Jin Qian,Taotao Wang,Yue Lu,Ying Yu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (3): 6505-6516
标识
DOI:10.3233/jifs-237951
摘要

Multi-granularity hesitant fuzzy linguistic terms set is an effective expression of linguistic information, which can utilize some fuzzy linguistic terms to evaluate various common qualitative information and plays an important role when experts provide linguistic information to express hesitancy. Since the alternative description in the decision-making information system is characterized by multi-granularity, uncertainty, and vagueness, this paper proposes a multi-granularity hesitant fuzzy linguistic decision-making VIKOR method based on entropy weight and information transformation. Specifically, this paper firstly adopts fuzzy information entropy to obtain the weights of different attributes and introduces a multi-granularity hesitant fuzzy linguistic term set conversion method to realize the semantic information conversion between different granularities. Then for the converted affiliation linguistic decision matrix, the entropy weighting method is used to obtain the weights of different affiliation granularity layers, and a weight optimization VIKOR method based on the affiliation linguistic decision matrix is further proposed to rank the alternatives. Finally, the feasibility of the proposed method verified by arithmetic examples, experimental analysis is carried out in terms of parameter sensitivity analysis and comparison with other methods. The experimental results prove the rationality and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田家溢完成签到,获得积分10
刚刚
头发多多完成签到,获得积分10
1秒前
充电宝应助Jane采纳,获得10
1秒前
haohao完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
陈俊辉完成签到,获得积分10
2秒前
今后应助小唐采纳,获得30
3秒前
chengcheng完成签到 ,获得积分10
3秒前
慕青应助snow采纳,获得10
4秒前
努力加油煤老八完成签到 ,获得积分10
5秒前
5秒前
想毕业完成签到,获得积分10
5秒前
6秒前
haohao发布了新的文献求助10
6秒前
上官若男应助Clara凤采纳,获得30
6秒前
chengcheng关注了科研通微信公众号
7秒前
ALON完成签到,获得积分10
7秒前
ray发布了新的文献求助10
8秒前
adfasd发布了新的文献求助10
8秒前
8秒前
斐嘿嘿发布了新的文献求助10
9秒前
9秒前
GC完成签到,获得积分10
9秒前
崔雨旋完成签到,获得积分10
9秒前
SSNN完成签到,获得积分10
10秒前
Cling5899完成签到,获得积分10
10秒前
11秒前
顺利的鱼完成签到,获得积分10
11秒前
11秒前
wangn完成签到,获得积分10
11秒前
Keith应助轻松千山采纳,获得50
12秒前
搜集达人应助好久不见采纳,获得10
12秒前
Jane发布了新的文献求助10
13秒前
英勇星月完成签到 ,获得积分10
13秒前
13秒前
哒哒发布了新的文献求助10
13秒前
魔幻傲霜发布了新的文献求助30
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809336
求助须知:如何正确求助?哪些是违规求助? 3353975
关于积分的说明 10368046
捐赠科研通 3070223
什么是DOI,文献DOI怎么找? 1686108
邀请新用户注册赠送积分活动 810813
科研通“疑难数据库(出版商)”最低求助积分说明 766384