亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the Effectiveness of Oversampling and Undersampling Techniques for Intrusion Detection on an Imbalanced Dataset

欠采样 过采样 计算机科学 入侵检测系统 班级(哲学) 随机森林 人工智能 机器学习 数据挖掘 统计 数学 带宽(计算) 计算机网络
作者
Fayruz Rahma,Reza Fuad Rachmadi,Baskoro Adi Pratomo,Mauridhi Hery Purnomo
标识
DOI:10.1109/ieacon57683.2023.10370430
摘要

The imbalanced class distribution in intrusion detection systems has been a significant issue. Imbalanced class distribution can negatively impact the performance of intrusion detection systems as they may be biased towards the majority class. We explore the effectiveness of oversampling and under-sampling techniques to address this issue. Oversampling and undersampling techniques aim to balance the class distribution and improve the performance of the intrusion detection system. Oversampling increases the number of records in the minority class to make it closer in size to the majority class. Conversely, undersampling reduces the number of records in the majority class so that it is closer in size to the minority class. We assess the effectiveness of different oversampling and undersampling techniques, including Random OverSampling, SMOTE, ADASYN, Random UnderSampling, AllKNN, TomekLinks, SMOTEENN, and SMOTETomek. The experiment's findings indicate that the raw data achieved the highest accuracy score, 0.965. On the other hand, the Random Oversampling method yielded the highest F1 score, reaching a score of 0.589. When we see the evaluation scores of each class, the recall & F1 scores generally show high contrast between classes with a large amount of data and classes with (previously) a small amount of data, even though the data for training has been more balanced. We found that oversampling and undersampling can improve the performance of intrusion detection systems in specific ways, but this still needs improvement. These results can serve as a reference for researchers developing intrusion detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongu应助昌莆采纳,获得10
2秒前
zlx完成签到 ,获得积分10
8秒前
10秒前
10秒前
14秒前
14秒前
15秒前
冬嘉发布了新的文献求助10
15秒前
kukudou2发布了新的文献求助10
17秒前
19秒前
20秒前
lina完成签到 ,获得积分10
21秒前
HJJHJH发布了新的文献求助10
26秒前
kukudou2完成签到,获得积分20
28秒前
28秒前
29秒前
典雅问寒完成签到,获得积分0
32秒前
哈哈环完成签到 ,获得积分10
32秒前
香蕉觅云应助dp采纳,获得10
33秒前
Xuayib完成签到 ,获得积分10
35秒前
yyds举报体贴的青烟求助涉嫌违规
36秒前
隐形曼青应助HJJHJH采纳,获得10
39秒前
刘忙完成签到,获得积分10
40秒前
42秒前
传奇3应助TT采纳,获得10
45秒前
自然听兰完成签到 ,获得积分10
46秒前
思源应助科研通管家采纳,获得10
49秒前
49秒前
hayek发布了新的文献求助200
50秒前
51秒前
邱桥伶发布了新的文献求助10
55秒前
56秒前
小羊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Benz完成签到,获得积分10
1分钟前
Benz发布了新的文献求助10
1分钟前
freedom完成签到,获得积分10
1分钟前
王w完成签到 ,获得积分10
1分钟前
悲凉的冬天完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946157
求助须知:如何正确求助?哪些是违规求助? 3490962
关于积分的说明 11058529
捐赠科研通 3221944
什么是DOI,文献DOI怎么找? 1780696
邀请新用户注册赠送积分活动 865774
科研通“疑难数据库(出版商)”最低求助积分说明 800061