A data-driven machine learning approach for electron-molecule ionization cross sections

电离 电子 原子物理学 电子电离 分子 物理 计算机科学 核物理学 离子 量子力学
作者
Allison Harris,Juan A. Nepomuceno
出处
期刊:Journal of Physics B [IOP Publishing]
卷期号:57 (2): 025201-025201 被引量:1
标识
DOI:10.1088/1361-6455/ad2185
摘要

Abstract Despite their importance in a wide variety of applications, the estimation of ionization cross sections for large molecules continues to present challenges for both experiment and theory. Machine learning (ML) algorithms have been shown to be an effective mechanism for estimating cross section data for atomic targets and a select number of molecular targets. We present an efficient ML model for predicting ionization cross sections for a broad array of molecular targets. Our model is a 3-layer neural network that is trained using published experimental datasets. There is minimal input to the network, making it widely applicable. We show that with training on as few as 10 molecular datasets, the network is able to predict the experimental cross sections of additional molecules with an accuracy similar to experimental uncertainties in existing data. As the number of training molecular datasets increased, the network’s predictions became more accurate and, in the worst case, were within 30% of accepted experimental values. In many cases, predictions were within 10% of accepted values. Using a network trained on datasets for 25 different molecules, we present predictions for an additional 27 molecules, including alkanes, alkenes, molecules with ring structures, and DNA nucleotide bases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Naza1119发布了新的文献求助10
刚刚
2秒前
2秒前
snoke完成签到 ,获得积分10
2秒前
MMMM发布了新的文献求助10
4秒前
fd完成签到,获得积分10
4秒前
买双球鞋完成签到,获得积分10
4秒前
文G发布了新的文献求助20
5秒前
5秒前
liberty发布了新的文献求助10
5秒前
科研通AI5应助iuuoo采纳,获得10
6秒前
6秒前
zhang发布了新的文献求助10
8秒前
买双球鞋发布了新的文献求助10
9秒前
斐嘿嘿发布了新的文献求助10
10秒前
zhzssaijj发布了新的文献求助10
12秒前
13秒前
nobody12004发布了新的文献求助10
13秒前
科研通AI2S应助琴楼采纳,获得10
15秒前
zhang完成签到,获得积分10
15秒前
隐形曼青应助白什么冰采纳,获得10
17秒前
18秒前
19秒前
starboy2nd完成签到,获得积分10
19秒前
21秒前
21秒前
dileibing完成签到,获得积分20
21秒前
嘻嘻哈哈发布了新的文献求助10
22秒前
房山芙完成签到,获得积分10
22秒前
高兴孤萍完成签到,获得积分10
23秒前
24秒前
无花果应助zhzssaijj采纳,获得10
24秒前
简单松鼠发布了新的文献求助10
25秒前
马户的崛起完成签到,获得积分10
26秒前
T_MC郭发布了新的文献求助10
28秒前
yyyyy发布了新的文献求助30
28秒前
malenia发布了新的文献求助10
28秒前
dungaway发布了新的文献求助10
29秒前
30秒前
YuchaoJia发布了新的文献求助10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336398
关于积分的说明 10280823
捐赠科研通 3053076
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761401