Unraveling phase prediction in high-entropy alloys: A synergy of machine learning, deep learning, and ThermoCalc, validation by experimental analysis

高熵合金 材料科学 金属间化合物 人工智能 机器学习 相(物质) 预测建模 计算机科学 冶金 微观结构 合金 物理 量子力学
作者
Mokali Veeresham,Narayanaswamy Sake,Unhae Lee,Nokeun Park
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:29: 1744-1755
标识
DOI:10.1016/j.jmrt.2024.01.145
摘要

The phase formation in high entropy alloys (HEAs) presents a significant challenge due to the complexity of their composition and the intricate interactions between multiple elements. The machine learning (ML) and deep learning (ANN) models play a crucial role in phase prediction for HEAs owing to their capability to handle intricate, multi-dimensional datasets and capture nuanced relationships between composition and phase formation. This article seeks to enhance the understanding of phase prediction in HEAs by utilizing ML, ANN, ThermoCalc, and experimental validation techniques. Parameters such as δ, VEC, and Tm, influential in predicting phases, were discerned using the Pearson correlation method. Various ML models, including kneighbors, bagging, adaboost, decision tree, extra trees, and ANN, were employed for predicting phase formation in HEAs. The ANN model exhibited an impressive accuracy of 90.62 %, while the extra trees model achieved an accuracy of 89.73 %. These ML and ANN models adeptly predicted the observed phases in experimental results, correctly identifying both HEAs Co10Cr19Fe30Mn23Ni9Ti8 and Co7Cr22Fe29Mn24Ni14Ti4 as having a face-centered cubic (FCC) + intermetallic (IM) structure. However, it is noteworthy that ThermoCalc and other ML models almost misclassified these HEAs. Both alloys primarily consist of an intermetallic phase enriched in titanium (Ti) and manganese (Mn) while exhibiting a noticeable depletion of iron (Fe) content. A comparison of these approaches underscores the significance of experimental validation in assessing the accuracy and reliability of phase predictions in HEAs, revealing the strengths and limitations of each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu完成签到,获得积分10
刚刚
1秒前
LPVV完成签到,获得积分10
2秒前
可可完成签到,获得积分10
2秒前
林林林完成签到,获得积分10
3秒前
万能图书馆应助sc采纳,获得10
3秒前
爆米花应助踏实凡阳采纳,获得10
3秒前
hushidi发布了新的文献求助10
3秒前
Singularity应助合金药丸采纳,获得10
3秒前
4秒前
隐形曼青应助冷暖自知采纳,获得10
5秒前
5秒前
MayorWang完成签到,获得积分10
5秒前
毕坚强完成签到,获得积分10
7秒前
LPVV发布了新的文献求助10
7秒前
8秒前
保持客气完成签到,获得积分10
8秒前
合金药丸完成签到,获得积分20
9秒前
Owen应助medlive2020采纳,获得10
10秒前
yezhiye完成签到,获得积分10
10秒前
lgl完成签到,获得积分10
11秒前
踏实奇异果完成签到,获得积分10
11秒前
悠夏sunny完成签到,获得积分10
11秒前
领导范儿应助onetec采纳,获得10
11秒前
12秒前
Lucas应助hushidi采纳,获得10
13秒前
调皮翅膀完成签到 ,获得积分10
13秒前
AteeqBaloch完成签到,获得积分10
13秒前
14秒前
酷波er应助sxm采纳,获得10
14秒前
健康的机器猫完成签到 ,获得积分10
15秒前
保持客气发布了新的文献求助10
15秒前
聪慧的松鼠完成签到,获得积分10
15秒前
随性i完成签到,获得积分10
17秒前
未改发布了新的文献求助10
17秒前
17秒前
luoyun完成签到,获得积分10
17秒前
研友_MLJxxZ完成签到,获得积分10
17秒前
18秒前
小甜水完成签到,获得积分10
18秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
NEW VALUES OF SOLUBILITY PARAMETERS FROM VAPOR PRESSURE DATA 300
Electrochemistry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2362181
求助须知:如何正确求助?哪些是违规求助? 2070261
关于积分的说明 5172025
捐赠科研通 1798595
什么是DOI,文献DOI怎么找? 898079
版权声明 557785
科研通“疑难数据库(出版商)”最低求助积分说明 479365