Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation

计算机科学 编码器 分割 变压器 人工智能 计算机视觉 视网膜 图像分割 医学 眼科 电压 电气工程 工程类 操作系统
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106132-106132
标识
DOI:10.1016/j.bspc.2024.106132
摘要

The retinal blood vessel is an essential part of the fundus structure. It is important to accurately analyze the structure and distribution of retinal vessels, which can help make accurate medical diagnoses. However, it is still challenging to extract detailed information due to the problems of fuzzy edges, low resolution, and lots of noise in retinal blood vessel medical images. To extract the image detail information effectively, we propose a new diverter transformer-based multi-encoder-multi-decoder network model in this paper. The network model consists of a feature encoder module and a feature decoder module. Among them, the feature encoding module consists of a diverter transformer with a diverter adaptive mechanism, three encoder units with a convolution layer and max-pooling layer, and the two decoder units in the feature decoding module consist of an inverse convolution layer and an up-sampling layer, respectively. The Local Context Module (LCNet Module) in the feature encoding module learns richer local context feature information layer by layer through changing the width of the network while downsampling; the Global Encoder Module1 (G-Encoder Module1) and the Global Encoder Module2 (G-Encoder Module2) extract the global feature representation of retinal blood vessel images by performing a max-pooling operation to transform the input data into a vector of fixed dimensions, thus helping the network model to better understand and extract the global feature representation of retinal blood vessel images. The two decoder units in the feature decoding module receive local and global feature information from three encoder units, LCNet Module, G-Encoder Module1 and G-Encoder Module2, respectively. Decoder Module1 generates segmentation prediction by layer-by-layer up-sampling operation, and Decoder Module2 recovers the feature information by downsampling and decoding operations and fuses the recovered feature information to output, obtaining the final segmentation of the retinal blood vessels. The proposed diverter transformer-based multi-encoder-multi-decoder network model is validated on the DRIVE and STARE datasets with other classical and state-of-the-art network models, and its segmentation accuracy is 97.25% and 97.93%, respectively. Compared with the classical U-Net model, the improvement is 2.24% and 1.42%, respectively. Compared with the state-of-the-art SPNet model, the accuracy is increased by 0.61% on DRIVE and 1.01% on STARE. It indicates that the network model proposed in this paper has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hg08完成签到,获得积分10
1秒前
2秒前
酷波er应助杨柯采纳,获得10
2秒前
NexusExplorer应助苏幕遮采纳,获得10
4秒前
hg08发布了新的文献求助10
4秒前
5秒前
动漫大师发布了新的文献求助10
6秒前
cdercder应助那兰采纳,获得10
6秒前
大勺子发布了新的文献求助10
6秒前
CipherSage应助yifan625采纳,获得10
7秒前
dennisysz发布了新的文献求助10
10秒前
10秒前
满怀完成签到,获得积分10
14秒前
IRONARMOUR发布了新的文献求助10
15秒前
李一发布了新的文献求助10
18秒前
chujun_cai完成签到 ,获得积分10
18秒前
英姑应助救驾来迟采纳,获得10
19秒前
高山七石完成签到,获得积分10
19秒前
皮质醇完成签到,获得积分10
20秒前
陌路完成签到,获得积分10
23秒前
25秒前
29秒前
天无雨亦留完成签到,获得积分10
29秒前
完美世界应助Summer采纳,获得10
30秒前
华仔应助暴躁的香氛采纳,获得10
32秒前
IRONARMOUR完成签到,获得积分10
33秒前
李健应助神内小大夫采纳,获得10
34秒前
领导范儿应助fnunu采纳,获得10
35秒前
36秒前
36秒前
38秒前
小蘑菇应助机灵哲瀚采纳,获得10
38秒前
39秒前
WFLLL发布了新的文献求助10
41秒前
苏幕遮发布了新的文献求助10
42秒前
dennisysz发布了新的文献求助10
43秒前
一颗煤炭完成签到 ,获得积分10
45秒前
FashionBoy应助li采纳,获得10
47秒前
48秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322820
关于积分的说明 10211936
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667191
邀请新用户注册赠送积分活动 798010
科研通“疑难数据库(出版商)”最低求助积分说明 758133