亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the therapeutic response to valproic acid in childhood absence epilepsy through electroencephalogram analysis using machine learning

丙戊酸 癫痫 发作性 脑电图 随机森林 儿童失神癫痫 去趋势波动分析 人口 人工智能 医学 内科学 机器学习 计算机科学 数学 精神科 缩放比例 环境卫生 几何学
作者
Shengping Li,Lung‐Chang Lin,Rei‐Cheng Yang,Chen‐Sen Ouyang,Yi-Hung Chiu,Mu-Han Wu,Yi‐Fang Tu,Tung‐Ming Chang,Rong‐Ching Wu
出处
期刊:Epilepsy & Behavior [Elsevier]
卷期号:151: 109647-109647 被引量:6
标识
DOI:10.1016/j.yebeh.2024.109647
摘要

Childhood absence epilepsy (CAE) is a common type of idiopathic generalized epilepsy, manifesting as daily multiple absence seizures. Although seizures in most patients can be adequately controlled with first-line antiseizure medication (ASM), approximately 25 % of patients respond poorly to first-line ASM. In addition, an accurate method for predicting first-line medication responsiveness is lacking. We used the quantitative electroencephalogram (QEEG) features of patients with CAE along with machine learning to predict the therapeutic effects of valproic acid in this population. We enrolled 25 patients with CAE from multiple medical centers. Twelve patients who required additional medication for seizure control or who were shifted to another ASM and 13 patients who achieved seizure freedom with valproic acid within 6 months served as the nonresponder and responder groups. Using machine learning, we analyzed the interictal background EEG data without epileptiform discharge before ASM. The following features were analyzed: EEG frequency bands, Hjorth parameters, detrended fluctuation analysis, Higuchi fractal dimension, Lempel–Ziv complexity (LZC), Petrosian fractal dimension, and sample entropy (SE). We applied leave-one-out cross-validation with support vector machine, K-nearest neighbor (KNN), random forest, decision tree, Ada boost, and extreme gradient boosting, and we tested the performance of these models. The responders had significantly higher alpha band power and lower delta band power than the nonresponders. The Hjorth mobility, LZC, and SE values in the temporal, parietal, and occipital lobes were higher in the responders than in the nonresponders. Hjorth complexity was higher in the nonresponders than in the responders in almost all the brain regions, except for the leads FP1 and FP2. Using KNN classification with theta band power in the temporal lobe yielded optimal performance, with sensitivity of 92.31 %, specificity of 76.92 %, accuracy of 84.62 %, and area under the curve of 88.46 %.We used various EEG features along with machine learning to accurately predict whether patients with CAE would respond to valproic acid. Our method could provide valuable assistance for pediatric neurologists in selecting suitable ASM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助殷勤的筝采纳,获得10
刚刚
刚刚
2秒前
星辰大海应助枭94采纳,获得10
2秒前
seven完成签到,获得积分20
6秒前
共享精神应助Aleksibob采纳,获得10
6秒前
Owen应助文文采纳,获得30
6秒前
yz47发布了新的文献求助10
6秒前
科目三应助Laily采纳,获得10
11秒前
12秒前
枭94完成签到,获得积分20
13秒前
13秒前
13秒前
yz47完成签到,获得积分10
14秒前
枭94发布了新的文献求助10
18秒前
完美世界应助小九采纳,获得10
23秒前
25秒前
共享精神应助松林采纳,获得10
29秒前
30秒前
33秒前
科研狗发布了新的文献求助10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
在水一方应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
CipherSage应助科研通管家采纳,获得10
35秒前
ding应助科研通管家采纳,获得10
35秒前
烟花应助科研通管家采纳,获得10
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
共享精神应助ttly采纳,获得10
36秒前
LM发布了新的文献求助10
37秒前
40秒前
上官若男应助飞快的孱采纳,获得10
41秒前
Marciu33发布了新的文献求助10
43秒前
46秒前
49秒前
阿文完成签到 ,获得积分10
49秒前
爱听歌盼海应助加菲丰丰采纳,获得10
49秒前
所所应助摩根采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488380
求助须知:如何正确求助?哪些是违规求助? 4587279
关于积分的说明 14413346
捐赠科研通 4518553
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434333