已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ambient and wearable system for workers’ stress evaluation

可穿戴计算机 计算机科学 背景(考古学) 人工智能 机器学习 噪音(视频) 无监督学习 嵌入式系统 人机交互 生物 图像(数学) 古生物学
作者
Gabriele Rescio,Andrea Manni,Andrea Caroppo,Marianna Ciccarelli,Alessandra Papetti,Alessandro Leone
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103905-103905 被引量:6
标识
DOI:10.1016/j.compind.2023.103905
摘要

The paradigm of Industry 4.0 involves fully automated and interconnected industrial production processes demanding a great deal of human-machine interaction. This implies the emergence of new problems related to the stress assessment of workers operating in new and more complex work contexts. To address this need, it may be important to implement automated stress detection platform designed to be effective in a real-world work setting. Many works in the literature deal with the stress evaluation topic, they use above all wearable systems that are often intrusive and subject to noise and artifacts that degrade performance. Moreover, most of them integrate supervised machine learning algorithms, which achieve high levels of detection accuracy, but require a complicated training phase, which might not be suitable in a real-world context. To reduce these limitations, a stress detection platform combining data from a wearable and an environmental system is presented in this paper. It analyses heart rate, galvanic skin response and camera RGB signals. The wearable device was designed to be minimally invasive with good signal stability and low noise, while a commercial camera was added to improve the performance of the whole hardware architecture. From the software perspective, the presented solution was first tested and validated using a supervised approach. Subsequently, attention was focused on the analysis and development of an unsupervised solution, implementing three unsupervised algorithms. The best performance was obtained with the Gaussian Mixture Model having an accuracy of 77.4% considering one level of stress and 75.1% with two levels of stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜啦啦完成签到 ,获得积分10
1秒前
小炮仗完成签到 ,获得积分10
2秒前
鬼笔环肽完成签到 ,获得积分10
4秒前
5秒前
新烟航停应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
8秒前
闲鱼电脑完成签到,获得积分10
9秒前
want完成签到 ,获得积分10
11秒前
12秒前
12秒前
执着千筹完成签到,获得积分10
12秒前
新酱不爱吃青椒完成签到 ,获得积分10
14秒前
cc完成签到,获得积分10
14秒前
疯狂的凡梦完成签到 ,获得积分10
15秒前
struggle发布了新的文献求助10
16秒前
16秒前
kpzwov完成签到,获得积分10
17秒前
奔波霸完成签到 ,获得积分10
23秒前
27秒前
浮浮世世发布了新的文献求助10
32秒前
充电宝应助娄心昊采纳,获得10
35秒前
折柳完成签到 ,获得积分10
35秒前
月Y发布了新的文献求助30
36秒前
我爱学习完成签到 ,获得积分10
38秒前
qq发布了新的文献求助10
39秒前
39秒前
42秒前
47秒前
48秒前
江城一霸完成签到,获得积分10
49秒前
51秒前
53秒前
阿烨完成签到,获得积分10
57秒前
兴奋的若菱完成签到 ,获得积分10
57秒前
59秒前
金水完成签到,获得积分10
1分钟前
1分钟前
guagua完成签到 ,获得积分10
1分钟前
Lijiahui完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476197
求助须知:如何正确求助?哪些是违规求助? 4577817
关于积分的说明 14362993
捐赠科研通 4505761
什么是DOI,文献DOI怎么找? 2468812
邀请新用户注册赠送积分活动 1456457
关于科研通互助平台的介绍 1430101