Classification of skin lesions with generative adversarial networks and improved MobileNetV2

计算机科学 人工智能 模式识别(心理学) 上下文图像分类 班级(哲学) 图像(数学) 皮肤损伤 特征(语言学) 光学(聚焦) 集合(抽象数据类型) 生成对抗网络 深度学习 医学 病理 程序设计语言 哲学 物理 光学 语言学
作者
Hui Wang,Qianqian Qi,Weijia Sun,Xue Li,Boxin Dong,Chunli Yao
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (5): 1561-1576 被引量:14
标识
DOI:10.1002/ima.22880
摘要

Abstract Malignant skin lesions pose a great threat to patients' health, and the use of computer algorithms for automatic skin medical image classification can effectively improve the efficiency of clinical diagnosis. However, the existing methods for skin classification have complex models and are greatly affected by the imbalance of the dataset. In this work, we propose a two‐stage framework called G‐DMN, it uses CycleGAN to expand the dataset and Dense‐MobileNetV2 (DMN) to achieve the automatic classification of skin lesion images. In the first stage, we use CycleGAN for data augmentation and propose a new image pairing strategy for training. Image pairs are formed from majority class images and minority class images, generators are trained for majority to minority class image conversion, and then minority class images are generated to balance the dataset. In the second stage, we propose a lightweight model called DMN by improving MobileNetV2, it enhances feature reuse by increasing the width of the network and allows the network to focus on focal areas from different scales. The original training set combined with the generated images is used to train DMN for skin lesion classification. We tested the proposed model on the HAM10000 dataset, and the G‐DMN achieved 87.07% classification accuracy, 80.13% precision, 75.28% sensitivity, 96.19% specificity, 77.26% F1‐Score and 0.952 AUC, which has a good classification effect, while the number of parameters of the model is only 5.33 M, which is much lower than other classical classification models. We demonstrate that the proposed method is lighter and more effective than classical classification methods, achieving significant performance improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智从彤完成签到,获得积分10
刚刚
jgh完成签到,获得积分20
刚刚
尽如完成签到,获得积分10
1秒前
水兽发布了新的文献求助10
1秒前
wyq发布了新的文献求助10
2秒前
阿黛尔完成签到,获得积分10
3秒前
3秒前
噜噜晓完成签到 ,获得积分10
3秒前
4秒前
5秒前
6秒前
A徽发布了新的文献求助10
6秒前
7秒前
威士忌www完成签到,获得积分10
8秒前
咕噜仔发布了新的文献求助10
9秒前
9秒前
xiaoxia发布了新的文献求助10
9秒前
水兽完成签到,获得积分10
10秒前
思源应助A徽采纳,获得10
11秒前
11秒前
Jaho完成签到,获得积分10
12秒前
谢家宝树完成签到,获得积分10
15秒前
dara997发布了新的文献求助10
15秒前
十三完成签到 ,获得积分10
15秒前
彭于晏应助咕噜仔采纳,获得10
15秒前
17秒前
NexusExplorer应助八丁采纳,获得10
17秒前
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
kingwill应助科研通管家采纳,获得20
18秒前
英姑应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
mm应助傲娇以晴采纳,获得30
19秒前
混吃等死研究生完成签到,获得积分10
19秒前
ZZZ完成签到,获得积分10
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796501
求助须知:如何正确求助?哪些是违规求助? 3341741
关于积分的说明 10307494
捐赠科研通 3058344
什么是DOI,文献DOI怎么找? 1678134
邀请新用户注册赠送积分活动 805897
科研通“疑难数据库(出版商)”最低求助积分说明 762838