Fault diagnosis of wind turbine blades under wide-weather multi-operating conditions based on multi-modal information fusion and deep learning

情态动词 断层(地质) 信息融合 涡轮机 融合 涡轮叶片 气象学 环境科学 计算机科学 人工智能 工程类 地质学 地震学 航空航天工程 地理 材料科学 哲学 语言学 高分子化学
作者
Ying Han,T Liu,Kun Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217251333761
摘要

Continuous health monitoring of wind turbine blades under all-weather and multi-operating conditions represents a significant challenge in the renewable energy sector. In this article, we present a fault diagnosis approach leveraging multi-modal information fusion and deep learning with continuous state division, thereby overcoming the limitations of traditional methods in complex and noisy environments. The operational conditions of wind turbine blades are categorized into two primary states: the wind operation state and the sudden shutdown state. Additionally, various climate types, including sunny, foggy, windy conditions, differing lighting levels, and others, are considered in the analysis. During wind operation, sound and vibration signals exhibit higher efficacy for fault detection; however, high noise levels may introduce interferences. To address the issue of indistinct fault characteristics after deep convolution due to multiple noise factors, which could result in reduced diagnostic accuracy, we propose a robust fast Fourier transform-ResTransNet model. In the shutdown state, vibration and sound data features become less prominent, making image processing techniques advantageous. Nevertheless, diverse climate types can lead to challenges such as low visibility, high noise, and other interferences. Consequently, we design a Swin-Transformer model that integrates infrared thermal imaging and visible light imagery. This model resolves the problem of non-homologous data representation and ensures accurate information interaction under multi-source data fusion. Simulation results confirm that the proposed fault diagnosis method achieves substantial improvements over existing approaches. To validate the practical applicability of our method, we construct a real-world wind turbine operational environment, simulate several common blade fault scenarios, and collect actual vibration, sound, and image data under varying weather conditions. Based on these simulations, we establish a multi-modal information fusion model tailored for different weather types. Furthermore, to facilitate the integration of our research into real-world wind farm operations, we develop a human–computer interface that enables seamless deployment. The corresponding source code is publicly available at https://github.com/midfigher/Humancomputer-interaction .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
刚刚
刚刚
行璐怡发布了新的文献求助10
1秒前
上官若男应助玉襄采纳,获得10
2秒前
小白菜完成签到,获得积分10
5秒前
狗蛋发布了新的文献求助10
6秒前
7秒前
含糊的无声完成签到 ,获得积分10
7秒前
娜娜完成签到,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得30
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
莫宝应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
czcmh应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
澜聴应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
胡民伟完成签到,获得积分10
9秒前
luiyi关注了科研通微信公众号
9秒前
okl完成签到,获得积分10
10秒前
乐乐应助Ashley采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533159
求助须知:如何正确求助?哪些是违规求助? 4621584
关于积分的说明 14579174
捐赠科研通 4561639
什么是DOI,文献DOI怎么找? 2499444
邀请新用户注册赠送积分活动 1479295
关于科研通互助平台的介绍 1450504