scDrugLink: Single-Cell Drug Repurposing for CNS Diseases via Computationally Linking Drug Targets and Perturbation Signatures

药物重新定位 药品 计算机科学 重新调整用途 计算生物学 医学 药理学 生物 生态学
作者
Li Huang,Xu Lu,Dongsheng Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2025.3552536
摘要

Central nervous system (CNS) diseases such as glioblastoma (GBM), multiple sclerosis (MS), and Alzheimer's disease (AD) remain challenging due to their complexity and limited treatments. Conventional drug repurposing strategies often rely on bulk RNA sequencing data, which can overlook cellular heterogeneity and mask rare but critical cell populations. Here, we introduce scDrugLink, a computational method that integrates single-cell transcriptomic data with drug targets and perturbation signatures to improve repurposing. For each cell type, scDrugLink constructs a Drug2Cell matrix based on drug targets to estimate promotion/inhibition scores and derives sensitivity/resistance scores by reverse matching signatures and disease-associated genes. These scores are then "linked," yielding robust therapeutic rankings. In our study, we present a systematic evaluation of single-cell drug repurposing methods for CNS diseases. Applied to atlas data for GBM, MS, and AD, scDrugLink surpassed three state-of-the-art methods (ASGARD, DrugReSC, and scDrugPrio), achieving area under the receiver operating characteristic curve (AUC) ranges of 0.6286-0.7242 and area under the precision-recall curve (AUPRC) ranges of 0.3412-0.5484. It also ranked top when comparing AUC and AUPRC at the level of individual cell types. Moreover, applying the "linking" principle to baseline methods boosted their performance, on average improving AUC and AUPRC by 0.0160 and 0.0244, respectively. Despite the advancements, the complexity and heterogeneity of CNS diseases, along with incomplete drug data, indicate that further improvement is necessary. We discuss these challenges and suggest directions for enhancing single-cell drug repurposing in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
落寞的绾绾完成签到,获得积分10
5秒前
高贵宛海发布了新的文献求助10
5秒前
5秒前
YY完成签到,获得积分10
5秒前
迟到虞姬发布了新的文献求助10
6秒前
英俊的铭应助Binggo采纳,获得20
7秒前
lili完成签到 ,获得积分10
7秒前
纯洁之心完成签到,获得积分20
8秒前
xiao发布了新的文献求助10
8秒前
十年饮冰发布了新的文献求助10
10秒前
17853723535完成签到,获得积分10
10秒前
10秒前
纯洁之心发布了新的文献求助30
11秒前
11秒前
小小富应助神秘玩家采纳,获得10
11秒前
等待发布了新的文献求助10
11秒前
感动的梦柏完成签到,获得积分10
12秒前
wangnn完成签到,获得积分10
13秒前
温温发布了新的文献求助30
14秒前
田様应助枯藤老柳树采纳,获得10
14秒前
梅雨季来信完成签到,获得积分10
15秒前
冯大哥完成签到,获得积分10
15秒前
风趣雪一完成签到,获得积分10
15秒前
打打应助hahaha采纳,获得10
16秒前
英姑应助乖猫要努力采纳,获得10
16秒前
科研通AI2S应助又来注水了采纳,获得10
16秒前
xiao完成签到,获得积分10
17秒前
单薄的南蕾完成签到 ,获得积分10
18秒前
荃芏完成签到,获得积分10
20秒前
一一完成签到 ,获得积分10
20秒前
汉堡包应助高贵宛海采纳,获得10
21秒前
泡泡熊不吐泡泡完成签到 ,获得积分10
21秒前
打打应助荃芏采纳,获得10
24秒前
24秒前
25秒前
Karvs完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324