A CNN–transformer fusion network for predicting high‐grade patterns in stage IA invasive lung adenocarcinoma

卷积神经网络 接收机工作特性 无线电技术 腺癌 变压器 计算机科学 人工智能 模式识别(心理学) 放射科 机器学习 医学 内科学 癌症 物理 电压 量子力学
作者
Yali Tao,Rong Sun,Jian Li,Wenhui Wu,Yuanzhong Xie,Xiaodan Ye,Xiujuan Li,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17781
摘要

Abstract Background Invasive lung adenocarcinoma (LUAD) with the high‐grade patterns (HGPs) has the potential for rapid metastasis and frequent recurrence. Therefore, accurately predicting the presence of high‐grade components is crucial for doctors to develop personalized treatment plans and improve patient prognosis. Purpose To develop a CNN–transformer fusion network based on radiomics and clinical information for predicting the HGPs of LUAD. Methods A total of 288 lesions in 288 patients with pathologically confirmed invasive LUAD were enrolled. Firstly, radiomics features were extracted from the entire tumor region on lung computed tomography (CT) images and then fused with clinical patient characteristics. Secondly, a structure was proposed that concatenated a convolutional neural network (CNN) and Transformer encoding blocks to mine and extract more comprehensive information. Finally, a classification prediction was performed through fully connected layers. Results Accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristic (ROC) curve (AUC) were utilized for evaluation of the model's classification prediction performance. Delong's test was used to compare the AUCs of different models for significance. The proposed model was effective with an accuracy of 0.86, sensitivity of 0.67, specificity of 0.94, precision of 0.74, and AUC of 0.91. Conclusions The CNN–transformer fusion network, based on radiomics and clinical information, demonstrates good performance in predicting the presence of HGPs and can be employed to assist in the development of personalized treatment plans for patients with invasive LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高高的山兰完成签到 ,获得积分10
1秒前
loey发布了新的文献求助10
2秒前
zc发布了新的文献求助20
2秒前
科研助手6应助库里强采纳,获得10
3秒前
3秒前
4秒前
今后应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
阿曾完成签到 ,获得积分10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
羲和之梦发布了新的文献求助10
6秒前
IMxYang应助科研通管家采纳,获得10
6秒前
Alex应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
蛇虫鼠蚁应助科研通管家采纳,获得100
7秒前
非而者厚应助科研通管家采纳,获得10
7秒前
非而者厚应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
夏淼发布了新的文献求助10
8秒前
快乐难敌发布了新的文献求助10
8秒前
英俊的铭应助许诺采纳,获得10
9秒前
9秒前
胡萝卜完成签到,获得积分10
10秒前
10秒前
12秒前
ing完成签到,获得积分10
12秒前
nakl完成签到,获得积分10
13秒前
温暖的钻石完成签到,获得积分10
14秒前
婉婉完成签到,获得积分10
14秒前
564654SDA完成签到,获得积分10
14秒前
哈哈2022完成签到,获得积分10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958