Study on bionic design of brake drum surface morphology and its anti-wear mechanism

制动器 材料科学 刹车片 往复运动 机制(生物学) 压力(语言学) 液压制动器 复合材料 机械工程 工程类 冶金 语言学 认识论 气体压缩机 哲学
作者
Shuai Zhang,X.L An,Jingyang Zheng,He Liu,Haiyang Yang,Ti Zhou
标识
DOI:10.1177/09544062251322273
摘要

To explore the anti-wear mechanism of drum brakes and improve their wear resistance, this paper investigates the wear performance of brake drums and friction pads and proposes a biomimetic surface design method for brake drums. Biomimetic brake drum samples with point, striped and grid-shaped surface unit structures are designed, and contact stress and wear mechanical models between the brake drum surface units and friction pads are established. The influence mechanism of different unit shapes on the contact stress and wear of friction pads is analysed theoretically. Semi-metallic, organic non-asbestos (NAO), and ceramic friction pad samples are tested in reciprocating wear tests against the three biomimetic brake drums. The effect of surface unit shapes on the contact stress is simulated using Abaqus software. The study examines the impact of surface unit shape, arrangement, spacing, height, angle and friction pad material on the wear resistance of the biomimetic brake drums. Striped and grid-shaped biomimetic brake drums are produced and tested in thermal fatigue bench tests with semi-metallic friction pads to verify the influence of unit shape parameters on the wear and fatigue performance of the brake drums. The wear test results show that the biomimetic brake drums have significantly better wear resistance than untreated brake drums. The thermal fatigue bench test results show that the grid-shaped biomimetic brake drum’s fatigue life increases by 38%, and self-wear is reduced by 62%. When the vehicle speed is 60 km/h, the braking torque of the striped brake drum increases by 5%, and the braking torque of the grid brake drum increases by 9.5%. Both the braking performance and wear resistance of the brake drum are improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假面绅士发布了新的文献求助10
1秒前
雪白秋莲完成签到,获得积分10
1秒前
2秒前
小小怪将军完成签到,获得积分10
3秒前
小二郎应助云泥采纳,获得10
5秒前
6秒前
7秒前
cxt完成签到,获得积分20
7秒前
活泼山雁发布了新的文献求助10
8秒前
1111发布了新的文献求助10
8秒前
9秒前
zho关闭了zho文献求助
11秒前
hying发布了新的文献求助10
11秒前
麦冬完成签到,获得积分20
11秒前
唐落音发布了新的文献求助10
13秒前
科研的牲口完成签到,获得积分10
13秒前
1111完成签到,获得积分10
15秒前
汉堡包应助云泥采纳,获得10
15秒前
勤恳迎梦完成签到,获得积分10
16秒前
Chris完成签到,获得积分10
17秒前
共享精神应助沉静从阳采纳,获得10
17秒前
唐落音完成签到,获得积分10
18秒前
内向莛发布了新的文献求助10
19秒前
袁晨悦完成签到 ,获得积分10
20秒前
丘比特应助dodoqia采纳,获得10
21秒前
硕shuo发布了新的文献求助20
21秒前
zho发布了新的文献求助10
22秒前
22秒前
24秒前
史淼荷发布了新的文献求助10
28秒前
28秒前
29秒前
溫蒂应助云泥采纳,获得10
29秒前
内向莛完成签到,获得积分10
29秒前
31秒前
我是老大应助赵鑫雅采纳,获得10
31秒前
34秒前
ShiRz发布了新的文献求助10
34秒前
麦冬发布了新的文献求助10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944