已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards a foundation model for partial differential equations: Multioperator learning and extrapolation

外推法 基础(证据) 偏微分方程 应用数学 数学 数学分析 政治学 法学
作者
Jingmin Sun,Yuxuan Liu,Zecheng Zhang,Hayden Schaeffer
出处
期刊:Physical review [American Physical Society]
卷期号:111 (3) 被引量:2
标识
DOI:10.1103/physreve.111.035304
摘要

Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multimodal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bimodality to bimodality learning, is a multioperator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multioperator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐利利关注了科研通微信公众号
1秒前
上官若男应助完美芒果采纳,获得10
2秒前
万能图书馆应助richard采纳,获得10
4秒前
三鲜汤发布了新的文献求助10
4秒前
yan发布了新的文献求助10
5秒前
陈欣瑶完成签到 ,获得积分10
6秒前
11秒前
微笑的铸海完成签到 ,获得积分10
16秒前
完美芒果发布了新的文献求助10
17秒前
yan发布了新的文献求助10
21秒前
21秒前
22秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
jiang应助科研通管家采纳,获得30
23秒前
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
yu应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得14
23秒前
23秒前
Cristina2024完成签到,获得积分10
25秒前
酷波er应助大橘采纳,获得30
27秒前
桃桃发布了新的文献求助10
28秒前
翻译度发布了新的文献求助10
28秒前
茴茴完成签到 ,获得积分10
29秒前
31秒前
脑洞疼应助妩媚的夏烟采纳,获得10
34秒前
安详怜蕾完成签到,获得积分10
35秒前
kenti2023完成签到 ,获得积分10
35秒前
路飞完成签到 ,获得积分10
42秒前
griffon完成签到,获得积分10
43秒前
43秒前
路飞关注了科研通微信公众号
46秒前
丘比特应助yan采纳,获得10
47秒前
48秒前
4114完成签到,获得积分10
49秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4080012
求助须知:如何正确求助?哪些是违规求助? 3619423
关于积分的说明 11485758
捐赠科研通 3335444
什么是DOI,文献DOI怎么找? 1833687
邀请新用户注册赠送积分活动 902688
科研通“疑难数据库(出版商)”最低求助积分说明 821214