作者
Xin Xiong,X. B. Ji,Sanli Yi,Chunwu Wang,Ruixiang Liu,Jianfeng He
摘要
Electroencephalogram (EEG) microstates are pivotal in understanding brain dynamics, reflecting transitions between global states. These parameters undergo selective inhibition within cortical areas, modulated by alpha oscillations. This study investigates how alpha band power influences microstate parameters across various task conditions, including resting state, actual motor execution, and imagined motor tasks. By comparing these three conditions, we aim to elucidate the distinct effects of alpha power on microstate dynamics, as each condition represents a unique pattern of brain activity. Motor imagery (MI) induces event-related desynchronization/synchronization, modulating Mu (alpha) and Beta rhythms in sensorimotor areas. However, the relationship between MI-EEG microstates and alpha power remains unclear. Our results show that alpha power was highest in resting state, followed by imagined motion, and lowest during actual motion. As alpha power increased, microstate A parameters in resting state (occurrence, coverage) decreased, while those in actual motion increased. Additionally, microstate B parameters rose with alpha power in resting state but decreased during imagined motion. Notably, alpha power correlated more strongly with microstate parameters in task states than in resting state. In addition, alpha, theta, and beta powers during task performance were negatively correlated with the duration of microstates A, B, and C, while being positively correlated with the occurrence of microstates A, B, C, and D. These findings suggest that alpha power influences microstate parameters differently depending on the brain, underscoring the significance of inter-band interactions in shaping microstate dynamics.