From Traditional Methods to Deep Learning Approaches: Advances in Protein–Protein Docking

对接(动物) 计算机科学 蛋白质-配体对接 人工智能 深度学习 机器学习 计算生物学 化学 药物发现 生物化学 生物 虚拟筛选 医学 护理部
作者
Linlong Jiang,Ke Zhang,Kai Zhu,Hui Zhang,Chao Shen,Tingjun Hou
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (2)
标识
DOI:10.1002/wcms.70016
摘要

ABSTRACT Protein–protein interactions play a crucial role in human biological processes, and deciphering their structural information and interaction patterns is essential for drug development. The high costs of experimental structure determination have brought computational protein–protein docking methods into the spotlight. Traditional docking algorithms, which hinge on a sampling‐scoring framework, heavily rely on extensive sampling of candidate poses and customized scoring functions based on the geometric and chemical compatibility between proteins. However, these methods face challenges related to sampling efficiency and stability. The advent of deep learning (DL) has ushered in data‐driven docking methods that demonstrate significant advantages, particularly boosting the efficiency of protein–protein docking. We systematically review the historical development of protein–protein docking from traditional approaches to DL techniques and provide insights into emerging technologies in this field. Moreover, we summarize the commonly used datasets and evaluation metrics in protein–protein docking. We expect that this review can offer valuable guidance for the development of more efficient protein–protein docking algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CQ完成签到,获得积分10
1秒前
踏实的无敌完成签到,获得积分10
2秒前
3秒前
4秒前
JamesPei应助科研通管家采纳,获得30
5秒前
科目三应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
lv应助咚咚杭采纳,获得10
6秒前
song完成签到 ,获得积分10
7秒前
8秒前
老肖发布了新的文献求助10
9秒前
bkagyin应助xmxm采纳,获得10
9秒前
ding应助ntrip采纳,获得10
11秒前
11秒前
LZQ应助小鹿采纳,获得10
13秒前
14秒前
15秒前
传奇3应助落后钢铁侠采纳,获得10
16秒前
novia完成签到,获得积分10
16秒前
NexusExplorer应助qsdxasc采纳,获得10
17秒前
zzeru21发布了新的文献求助50
18秒前
18秒前
布丁完成签到,获得积分10
20秒前
20秒前
jx314完成签到,获得积分10
22秒前
23秒前
科研通AI5应助你说要叫啥采纳,获得10
24秒前
冰雪痕完成签到 ,获得积分10
24秒前
茄子爱睡觉完成签到,获得积分10
26秒前
li发布了新的文献求助10
26秒前
26秒前
辛苦科研人完成签到 ,获得积分10
28秒前
jtksbf完成签到,获得积分10
28秒前
29秒前
qsdxasc发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986