Flash Drought Prediction using Deep Learning

闪光灯(摄影) 计算机科学 人工智能 机器学习 艺术 视觉艺术
作者
Preminda Jacob,Nurendra Choudhary,Abhirup Dikshit,Jason P. Evans,Biswajeet Pradhan,Alfredo Huete
出处
期刊:Environmental Research Letters [IOP Publishing]
标识
DOI:10.1088/1748-9326/addb65
摘要

Abstract Flash droughts are sudden, short-term drought events that develop within weeks, unlike traditional droughts that unfold gradually over time. These events arise from a combination of climatic factors, such as low rainfall, high temperatures, and strong winds, which rapidly deplete soil moisture and stress vegetation, leading to severe agricultural, economic, and ecological impacts. Despite the significant challenges in defining and analysing flash droughts, only a few studies have employed machine learning techniques to predict these occurrences. The use of machine learning in this context remains in its early stages due to complications like imbalanced datasets and limited data size. This study addresses these challenges by employing Convolutional Neural Networks (CNN) to predict flash droughts in Eastern Australia - a region historically prone to these events. We identified flash droughts from 2001 to 2022, with the model training performed on data from 2001-2015, validation from 2016-2017, and testing from 2018-2022. The model's performance was assessed across different scenarios, including drought duration, spatial distribution, and seasonal variability. The CNN achieved a balanced accuracy of 80% and an Area Under the Curve (AUC) of 93%, demonstrating its capability to predict flash drought events effectively. While the model showed promising results in accurately forecasting flash droughts, it tended to overestimate the spatial extent of drought-prone regions, highlighting areas for future improvement. These findings underscore the potential of deep learning, in enhancing our understanding and prediction of flash droughts, offering a valuable tool for early warning systems and drought management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿庆发布了新的文献求助10
1秒前
kecheng发布了新的文献求助10
1秒前
1秒前
lan完成签到 ,获得积分10
2秒前
4秒前
无医完成签到,获得积分10
6秒前
7秒前
Ava应助An采纳,获得10
7秒前
充电宝应助彩色的过客采纳,获得10
7秒前
asdf1234q1完成签到,获得积分10
8秒前
菜狗完成签到,获得积分10
8秒前
局外人完成签到,获得积分10
8秒前
呼呼呼完成签到,获得积分10
8秒前
8秒前
8秒前
Clarie完成签到,获得积分10
9秒前
bububusbu完成签到,获得积分10
9秒前
Aurinse完成签到,获得积分10
10秒前
科研通AI6应助杰哥采纳,获得30
10秒前
10秒前
大妙妙完成签到 ,获得积分10
11秒前
聂青枫完成签到,获得积分10
12秒前
Clarie发布了新的文献求助10
13秒前
13秒前
John完成签到 ,获得积分10
14秒前
李喜喜发布了新的文献求助10
14秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
16秒前
北北北应助WR采纳,获得10
16秒前
研友_kngjrL发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
MYZ完成签到,获得积分10
20秒前
20秒前
热心市民应助李喜喜采纳,获得20
20秒前
SciGPT应助徐澄澄采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474940
求助须知:如何正确求助?哪些是违规求助? 3933488
关于积分的说明 12204152
捐赠科研通 3588032
什么是DOI,文献DOI怎么找? 1972679
邀请新用户注册赠送积分活动 1010397
科研通“疑难数据库(出版商)”最低求助积分说明 904001