Identifying central symptom clusters and correlates among post-COVID-19 pulmonary fibrosis patients: a network analysis

2019年冠状病毒病(COVID-19) 肺纤维化 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 医学 内科学 纤维化 病理 疾病 传染病(医学专业) 爆发
作者
Zhen Yang,Zhiqin Xie,Zequan Wang,Lina Yi,Shihan Chen,Yujun Du,Xuemei Tao,Chao Xie,Li Zhou,Min Zhang,Chaozhu He
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fmed.2025.1538708
摘要

Previous studies have analyzed symptom clusters in patients with coronavirus disease 2019 (COVID-19); however, evidence regarding the core symptom clusters and their influencing factors in patients with post-COVID-19 pulmonary fibrosis (PCPF) remains unclear, affecting the precision of symptom interventions. This study aimed to identify the symptom clusters and core symptom clusters in patients with PCPF. Demographic and disease-related factors associated with these symptom clusters were also analyzed. A total of 350 patients with PCPF were recruited from China between January 2023 and April 2024. A self-reported symptom assessment scale was used for this survey. Principal component analysis was used to identify symptom clusters. Network analysis was used to describe the relationships between the symptoms and symptom clusters. Multiple linear models were used to analyze the factors affecting the total symptom severity and each symptom cluster. Six symptom clusters were identified: Upper Respiratory Tract Symptom Cluster (USC), Lower Respiratory Tract Symptom Cluster (LSC), Somatic Symptom Cluster (SSC), Muscular and Joint Symptom Cluster (MSC), Neurological and Psychological Symptom Cluster (NSC), and Digestive Symptom Cluster (DSC). Fatigue was identified as the core and bridge symptom in the symptom network, whereas the upper respiratory symptom cluster was identified as the core and bridge symptom cluster. Gender, age, educational level, smoking history, and primary caregiver were associated with the scores of the six symptom clusters. Our study suggests that there is a need to evaluate symptom clusters for the improvement of symptom management among PCPF. Specifically, the assessment and treatment of upper respiratory and fatigue symptoms as core targets of PCPF care is critical for the development of accurate and efficient symptom management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
maomaozi发布了新的文献求助10
1秒前
1秒前
Lucas应助希望早睡采纳,获得30
3秒前
lmk发布了新的文献求助10
4秒前
慕青应助白日梦采纳,获得10
4秒前
爱撒娇的孤丹完成签到 ,获得积分10
5秒前
桃桃发布了新的文献求助10
6秒前
曾经的鸡翅完成签到,获得积分10
7秒前
8秒前
慕青应助Yun yun采纳,获得10
9秒前
10秒前
笑面客发布了新的文献求助10
12秒前
桃桃完成签到,获得积分10
13秒前
wwyy应助西门冥幽采纳,获得10
13秒前
吕文晴发布了新的文献求助10
14秒前
小白发布了新的文献求助10
14秒前
可爱的函函应助maomaozi采纳,获得10
15秒前
CipherSage应助wangbw采纳,获得30
16秒前
个性的夜天完成签到,获得积分10
18秒前
orixero应助JUNE-gj采纳,获得10
20秒前
布莱克库库关注了科研通微信公众号
21秒前
21秒前
NovermberRain发布了新的文献求助10
24秒前
kb完成签到,获得积分10
25秒前
小二郎应助djx采纳,获得10
26秒前
26秒前
中工完成签到 ,获得积分10
27秒前
添添历险记完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
LIMORY发布了新的文献求助10
31秒前
32秒前
32秒前
32秒前
科研通AI6应助LG采纳,获得10
35秒前
35秒前
楚昕越发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849211
求助须知:如何正确求助?哪些是违规求助? 4148647
关于积分的说明 12850735
捐赠科研通 3896022
什么是DOI,文献DOI怎么找? 2141368
邀请新用户注册赠送积分活动 1160993
关于科研通互助平台的介绍 1061100