清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature Ensemble Learning for Sensor Array Data Classification Under Low-Concentration Gas

过度拟合 极限学习机 降维 模式识别(心理学) 维数之咒 计算机科学 人工智能 分类器(UML) 特征(语言学) 特征提取 集成学习 数据挖掘 机器学习 人工神经网络 语言学 哲学
作者
Leilei Zhao,Fengchun Tian,Junhui Qian,Hantao Li,Zhiyuan Wu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-9 被引量:4
标识
DOI:10.1109/tim.2023.3251416
摘要

Gas sensor array (GSA) data usually has high-dimensional features and a small sample size. When a classifier is directly used for GSA data classification, it is prone to overfitting and has a high time cost. The traditional solution is to perform feature dimensionality reduction before classification. However, selecting a suitable dimensionality reduction method is time-consuming and laborious, and some features useful for classification may be lost after dimensionality reduction, especially for the weak sensor response data to low-concentration gases. In this article, we proposed a feature ensemble-based extreme learning machine framework (FE-ELM) for GSA data classification. In FE-ELM, downsampling is first performed on the time series of each sensor, and then the downsampled features of different sensors are combined to obtain fused feature subsets. Next, a base ELM is trained independently on each fused feature subset with all training samples by solving the least-squares problem. The final FE-ELM predictions for input samples are obtained by voting the prediction results of all base ELMs. Compared with traditional methods, the proposed method solves the overfitting problem and can be directly used for GSA data classification without prior feature dimension reduction. Furthermore, the ensemble of all base classifiers with little loss of original features enables the proposed FE-ELM to have a more efficient and robust classification performance. Experimental results on data from both homemade GSA under low-concentration gases (ppb) and publicly available confirm that the proposed FE-ELM exceeds traditional methods and extends the detection limit of the sensor array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小面包儿完成签到 ,获得积分10
1秒前
51秒前
量子星尘发布了新的文献求助10
52秒前
1分钟前
1分钟前
1分钟前
2分钟前
Jessie完成签到,获得积分10
2分钟前
勤奋青寒完成签到,获得积分10
2分钟前
拼搏向上发布了新的文献求助10
2分钟前
2分钟前
拼搏向上完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
orezot发布了新的文献求助10
2分钟前
3分钟前
美好灵寒完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
最最最发布了新的文献求助10
3分钟前
orezot完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
vbnn完成签到 ,获得积分10
5分钟前
苏楠发布了新的文献求助30
5分钟前
5分钟前
量子星尘发布了新的文献求助30
5分钟前
gzf完成签到 ,获得积分10
5分钟前
Virtual应助科研通管家采纳,获得10
6分钟前
6分钟前
淡淡乐巧完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4262031
求助须知:如何正确求助?哪些是违规求助? 3794880
关于积分的说明 11899387
捐赠科研通 3441839
什么是DOI,文献DOI怎么找? 1888793
邀请新用户注册赠送积分活动 939521
科研通“疑难数据库(出版商)”最低求助积分说明 844593