Bidirectional Knowledge-Aware Attention Network over Knowledge Graph for Explainable Recommendation

可解释性 计算机科学 推荐系统 知识图 情报检索 图形 协同过滤 关系(数据库) 知识库 万维网 数据挖掘 人工智能 理论计算机科学
作者
Yanxia Lyu,Guorui Su,Jianghan Wang,Ye Xing
标识
DOI:10.1145/3578741.3578776
摘要

Now recommendation systems are introduced into various online applications to help users find the content they want from massive data. Although the recommendation method based on collaborative filtering can adapt to the change of recommendation scenarios, the recommendation heavily depends on interaction data, so the recommendations are seriously affected by data sparsity. To alleviate the above problem researchers introduce knowledge graph as side information into the recommendation system. By exploring the rich entity information and relation information in knowledge graph, we can enrich the representations of user and item and enhance interpretability of recommendation system. However, some recommendation methods only carry out unidirectional knowledge propagation when mining knowledge information, which makes it difficult to capture higher-order knowledge information when the knowledge graph is sparse. Meanwhile, most recommendation models do not make full use of the relations between users, items and entities to enhance the interpretability of recommendations. Based on the reasons above, we design a novel bidirectional knowledge-aware attention network framework for explainable recommendation named BKANE, which integrates interaction information and high-order knowledge information, completing the recommendation in an end-to-end manner. The experimental results on three real datasets show that BKANE is significantly better than the state-of-the-art baselines in terms of recommendation performance. Also, the graphical explanation form can provide developers and users with a reasonable explanation of the model and recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼要变咸完成签到,获得积分10
刚刚
刚刚
shiizii应助黄晓荷采纳,获得10
1秒前
1秒前
科研通AI2S应助呦呦奶黄啵采纳,获得10
1秒前
董博宇完成签到,获得积分10
2秒前
MCS完成签到,获得积分10
2秒前
123发布了新的文献求助30
2秒前
zq完成签到,获得积分20
2秒前
AHR发布了新的文献求助10
3秒前
落寞鞋子发布了新的文献求助20
4秒前
1397发布了新的文献求助10
4秒前
ShengzhangLiu发布了新的文献求助10
4秒前
4秒前
5秒前
无花果应助小劳采纳,获得10
5秒前
leo完成签到,获得积分20
6秒前
睡着的鱼完成签到,获得积分10
6秒前
天天快乐应助粗犷的契采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
米琪格子完成签到,获得积分10
10秒前
小张完成签到,获得积分10
10秒前
ding应助YBR采纳,获得10
11秒前
11秒前
玖Nine完成签到,获得积分10
11秒前
kai发布了新的文献求助10
11秒前
狐狸小姐完成签到,获得积分10
11秒前
12秒前
学术fw完成签到,获得积分10
13秒前
13秒前
FashionBoy应助Lyg采纳,获得10
13秒前
利好完成签到 ,获得积分10
14秒前
Camellia发布了新的文献求助10
14秒前
脑洞疼应助灵梦柠檬酸采纳,获得10
14秒前
脑洞疼应助123456采纳,获得10
15秒前
飞快的平彤完成签到,获得积分10
15秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024858
求助须知:如何正确求助?哪些是违规求助? 3564689
关于积分的说明 11346690
捐赠科研通 3295914
什么是DOI,文献DOI怎么找? 1815361
邀请新用户注册赠送积分活动 889971
科研通“疑难数据库(出版商)”最低求助积分说明 813212