The role of biomechanical stress in extracellular vesicle formation, composition and activity

生物过程 生物制造 生化工程 生物发生 细胞外小泡 作文(语言) 计算机科学 纳米技术 生物 材料科学 生物技术 工程类 细胞生物学 生物化学 语言学 哲学 基因 古生物学
作者
Will Thompson,Eleftherios T. Papoutsakis
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:66: 108158-108158 被引量:33
标识
DOI:10.1016/j.biotechadv.2023.108158
摘要

Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition—and thus, activity—is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的访风完成签到,获得积分10
刚刚
丁闯发布了新的文献求助10
刚刚
wangrblzu应助视野胤采纳,获得10
1秒前
17完成签到,获得积分10
1秒前
2秒前
hcsdgf完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
简单十三完成签到,获得积分10
4秒前
雪花不滑完成签到,获得积分10
5秒前
刘倩发布了新的文献求助10
5秒前
5秒前
zz完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
Mengjie完成签到,获得积分10
9秒前
华仔应助机灵又蓝采纳,获得10
9秒前
9秒前
9秒前
格拉希尔完成签到 ,获得积分10
9秒前
直率的冰海完成签到,获得积分10
9秒前
英姑应助小刘采纳,获得10
10秒前
fanssw完成签到 ,获得积分10
10秒前
11秒前
小林完成签到 ,获得积分10
11秒前
11秒前
呱呱乐发布了新的文献求助10
12秒前
果果发布了新的文献求助10
12秒前
哭泣乌发布了新的文献求助10
12秒前
12秒前
ccm发布了新的文献求助10
12秒前
胡树发布了新的文献求助10
13秒前
害羞的花生完成签到,获得积分20
13秒前
情怀应助Jasmine采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940