The role of biomechanical stress in extracellular vesicle formation, composition and activity

生物过程 生物制造 生化工程 生物发生 细胞外小泡 作文(语言) 计算机科学 纳米技术 生物 材料科学 生物技术 工程类 细胞生物学 生物化学 语言学 哲学 基因 古生物学
作者
Will Thompson,Eleftherios T. Papoutsakis
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:66: 108158-108158 被引量:9
标识
DOI:10.1016/j.biotechadv.2023.108158
摘要

Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition-and thus, activity-is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aka小满完成签到,获得积分10
刚刚
2秒前
大方泥猴桃完成签到,获得积分10
3秒前
黑魔仙发布了新的文献求助10
3秒前
4秒前
天天浇水完成签到,获得积分10
5秒前
charry完成签到,获得积分10
6秒前
Palpitate发布了新的文献求助10
6秒前
科研通AI2S应助戈多采纳,获得10
7秒前
结实的凤妖完成签到 ,获得积分10
7秒前
oreo完成签到 ,获得积分10
8秒前
pluto应助李静采纳,获得10
8秒前
8秒前
Owen应助爱听歌从灵采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
易水萧萧应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
明亮雁露应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
Don发布了新的文献求助10
9秒前
ffff完成签到,获得积分10
10秒前
吾皇完成签到 ,获得积分10
10秒前
寒冷小兔子完成签到,获得积分10
11秒前
MMM完成签到,获得积分10
12秒前
搞怪柔完成签到,获得积分10
12秒前
Owen应助沉淀采纳,获得10
13秒前
14秒前
HT发布了新的文献求助30
15秒前
喜悦的尔阳完成签到,获得积分10
15秒前
甜美不评完成签到,获得积分10
15秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Chemistry and biology of antigen presentation in celiac sprue 430
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2490509
求助须知:如何正确求助?哪些是违规求助? 2149655
关于积分的说明 5487799
捐赠科研通 1870677
什么是DOI,文献DOI怎么找? 929928
版权声明 563339
科研通“疑难数据库(出版商)”最低求助积分说明 497322