已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for Engineering Applications

算法 水母 局部最优 计算机科学 数学优化 优化算法 人口 粒子群优化 数学 生态学 生物 社会学 人口学
作者
Gang Hu,Jiao Wang,Min Li,Abdelazim G. Hussien,Muhammad Abbas
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 851-851 被引量:37
标识
DOI:10.3390/math11040851
摘要

The jellyfish search (JS) algorithm impersonates the foraging behavior of jellyfish in the ocean. It is a newly developed metaheuristic algorithm that solves complex and real-world optimization problems. The global exploration capability and robustness of the JS algorithm are strong, but the JS algorithm still has significant development space for solving complex optimization problems with high dimensions and multiple local optima. Therefore, in this study, an enhanced jellyfish search (EJS) algorithm is developed, and three improvements are made: (i) By adding a sine and cosine learning factors strategy, the jellyfish can learn from both random individuals and the best individual during Type B motion in the swarm to enhance optimization capability and accelerate convergence speed. (ii) By adding a local escape operator, the algorithm can skip the trap of local optimization, and thereby, can enhance the exploitation ability of the JS algorithm. (iii) By applying an opposition-based learning and quasi-opposition learning strategy, the population distribution is increased, strengthened, and more diversified, and better individuals are selected from the present and the new opposition solution to participate in the next iteration, which can enhance the solution’s quality, meanwhile, convergence speed is faster and the algorithm’s precision is increased. In addition, the performance of the developed EJS algorithm was compared with those of the incomplete improved algorithms, and some previously outstanding and advanced methods were evaluated on the CEC2019 test set as well as six examples of real engineering cases. The results demonstrate that the EJS algorithm can skip the trap of local optimization, can enhance the solution’s quality, and can increase the calculation speed. In addition, the practical engineering applications of the EJS algorithm also verify its superiority and effectiveness in solving both constrained and unconstrained optimization problems, and therefore, suggests future possible applications for solving such optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜甜完成签到 ,获得积分10
2秒前
剑指东方是为谁应助Kurenai采纳,获得10
3秒前
邱雪辉关注了科研通微信公众号
4秒前
4秒前
5秒前
7秒前
CipherSage应助chenyiwei采纳,获得10
7秒前
Yan完成签到 ,获得积分20
8秒前
9秒前
剑指东方是为谁应助Kurenai采纳,获得10
9秒前
俊逸湘发布了新的文献求助10
12秒前
爆米花应助xymy采纳,获得10
12秒前
12秒前
幸福的雪枫完成签到 ,获得积分10
13秒前
14秒前
桐炫发布了新的文献求助10
16秒前
聂超群发布了新的文献求助10
17秒前
邱雪辉发布了新的文献求助10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
20秒前
26秒前
26秒前
爆米花应助ni采纳,获得10
30秒前
jbtjht发布了新的文献求助10
31秒前
Owen应助sunc采纳,获得10
33秒前
华仔应助洛洛采纳,获得10
36秒前
cosimo完成签到 ,获得积分10
36秒前
XXHH完成签到,获得积分10
36秒前
卫斯理关注了科研通微信公众号
37秒前
39秒前
seven完成签到 ,获得积分10
39秒前
和谐冰菱完成签到 ,获得积分10
39秒前
41秒前
科研通AI5应助奋斗含巧采纳,获得10
43秒前
45秒前
拼搏向上发布了新的文献求助100
47秒前
Akim应助儒雅寒天采纳,获得10
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784705
求助须知:如何正确求助?哪些是违规求助? 3329891
关于积分的说明 10243654
捐赠科研通 3045221
什么是DOI,文献DOI怎么找? 1671596
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416