Network distribution and sentiment interaction: Information diffusion mechanisms between social bots and human users on social media

社会化媒体 计算机科学 可靠性 社会网络分析 情绪分析 社交网络(社会语言学) 舆论 社交媒体分析 互联网隐私 心理学 数据科学 万维网 人工智能 政治学 政治 法学
作者
Meng Cai,Han Luo,Xiao Meng,Ying Cui,Wei Wang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103197-103197 被引量:44
标识
DOI:10.1016/j.ipm.2022.103197
摘要

When public health emergencies occur, a large amount of low-credibility information is widely disseminated by social bots, and public sentiment is easily manipulated by social bots, which may pose a potential threat to the public opinion ecology of social media. Therefore, exploring how social bots affect the mechanism of information diffusion in social networks is a key strategy for network governance. This study combines machine learning methods and causal regression methods to explore how social bots influence information diffusion in social networks with theoretical support. Specifically, combining stakeholder perspective and emotional contagion theory, we proposed several questions and hypotheses to investigate the influence of social bots. Then, the study obtained 144,314 pieces of public opinion data related to COVID-19 in J city from March 1, 2022, to April 18, 2022, on Weibo, and selected 185,782 pieces of data related to the outbreak of COVID-19 in X city from December 9, 2021, to January 10, 2022, as supplement and verification. A comparative analysis of different data sets revealed the following findings. Firstly, through the STM topic model, it is found that some topics posted by social bots are significantly different from those posted by humans, and social bots play an important role in certain topics. Secondly, based on regression analysis, the study found that social bots tend to transmit information with negative sentiments more than positive sentiments. Thirdly, the study verifies the specific distribution of social bots in sentimental transmission through network analysis and finds that social bots are weaker than human users in the ability to spread negative sentiments. Finally, the Granger causality test is used to confirm that the sentiments of humans and bots can predict each other in time series. The results provide practical suggestions for emergency management under sudden public opinion and provide a useful reference for the identification and analysis of social bots, which is conducive to the maintenance of network security and the stability of social order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大道要熬完成签到,获得积分10
刚刚
了一李应助开心市民采纳,获得10
1秒前
欣慰小蕊完成签到,获得积分10
2秒前
醉熏的灵安完成签到 ,获得积分10
3秒前
喜乐多完成签到,获得积分10
3秒前
科研通AI5应助Summer采纳,获得10
3秒前
聪明摩托完成签到,获得积分10
4秒前
Mp4完成签到 ,获得积分10
5秒前
一只医学dog关注了科研通微信公众号
6秒前
深情安青应助小肥羊采纳,获得10
6秒前
7秒前
FAYE完成签到,获得积分10
7秒前
研友_VZG7GZ应助聪明摩托采纳,获得10
7秒前
闾丘惜萱完成签到,获得积分10
7秒前
吴大语完成签到,获得积分10
8秒前
9秒前
xxy991007完成签到,获得积分10
10秒前
淡水鱼完成签到 ,获得积分10
11秒前
要减肥的卷心菜完成签到,获得积分10
12秒前
xxy991007发布了新的文献求助10
13秒前
英俊延恶完成签到,获得积分10
14秒前
nnnn完成签到,获得积分10
15秒前
ZQF完成签到,获得积分20
15秒前
勤H发布了新的文献求助20
16秒前
Jau完成签到,获得积分0
17秒前
含蓄绿兰完成签到,获得积分10
17秒前
务实羊发布了新的文献求助20
17秒前
小心完成签到 ,获得积分10
18秒前
18秒前
JasVe完成签到 ,获得积分10
18秒前
19秒前
123完成签到,获得积分10
19秒前
科研通AI5应助陈昭琼采纳,获得10
20秒前
岁月如歌完成签到,获得积分0
21秒前
ljn0406完成签到 ,获得积分10
22秒前
胡杨完成签到,获得积分10
22秒前
keyan发布了新的文献求助10
23秒前
小肥羊发布了新的文献求助10
24秒前
你不知道完成签到 ,获得积分10
24秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050