已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting left main stenosis in stable ischemic heart disease using logistic regression and boosted trees

医学 逻辑回归 狭窄 冠状动脉疾病 内科学 心脏病学 糖尿病 人口 疾病 部分流量储备 心肌梗塞 冠状动脉造影 环境卫生 内分泌学
作者
Lucas C. Godoy,Michael E. Farkouh,Peter C. Austin,Baiju R. Shah,Feng Qiu,Maneesh Sud,Harindra C. Wijeysundera,G.B. John Mancini,Dennis T. Ko
出处
期刊:American Heart Journal [Elsevier BV]
卷期号:256: 117-127 被引量:5
标识
DOI:10.1016/j.ahj.2022.11.004
摘要

The ISCHEMIA trial showed similar cardiovascular outcomes of an initial conservative strategy as compared with invasive management in patients with stable ischemic heart disease without left main stenosis. We aim to assess the feasibility of predicting significant left main stenosis using extensive clinical, laboratory and non-invasive tests data.All adult patients who had stress testing prior to undergoing an elective coronary angiography for stable ischemic heart disease in Ontario, Canada, between April 2010 and March 2019, were included. Candidate predictors included comprehensive demographics, comorbidities, laboratory tests, and cardiac stress test data. The outcome was stenosis of 50% or greater in the left main coronary artery. A traditional model (logistic regression) and a machine learning algorithm (boosted trees) were used to build prediction models.Among 150,423 patients included (mean age: 64.2 ± 10.6 years; 64.1% males), there were 9,225 (6.1%) with left main stenosis. The final logistic regression model included 24 predictors and 3 interactions, had an optimism-adjusted c-statistic of 0.72 and adequate calibration (optimism-adjusted Integrated Calibration Index 0.0044). These results were consistent in subgroups of males and females, diabetes and non-diabetes, and extent of ischemia. The boosted tree algorithm had similar accuracy, also resulting in a c-statistic of 0.72 and adequate calibration (Integrated Calibration Index 0.0054).In this large population-based study of patients with stable ischemic heart disease using extensive clinical data, only modest prediction of left main coronary artery disease was possible with traditional and machine learning modelling techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
co关闭了co文献求助
1秒前
2秒前
和平发展发布了新的文献求助10
2秒前
Fiona678完成签到,获得积分10
3秒前
5秒前
黑球发布了新的文献求助10
6秒前
社恐小魏完成签到,获得积分10
8秒前
8秒前
社恐小魏发布了新的文献求助10
12秒前
batmanrobin完成签到,获得积分10
16秒前
无心的月亮完成签到,获得积分10
17秒前
DJDJ完成签到,获得积分10
18秒前
19秒前
白日幻想家完成签到 ,获得积分10
19秒前
张墩墩完成签到 ,获得积分10
21秒前
张墩墩关注了科研通微信公众号
25秒前
李爱国应助nirvana采纳,获得10
36秒前
charllar完成签到 ,获得积分20
40秒前
42秒前
聪明灵阳完成签到,获得积分10
43秒前
48秒前
凛玖niro完成签到,获得积分10
48秒前
48秒前
充盈缺损关注了科研通微信公众号
50秒前
52秒前
re发布了新的文献求助10
53秒前
53秒前
陆晓亦完成签到,获得积分10
54秒前
赘婿应助budingman采纳,获得10
54秒前
小马甲应助budingman采纳,获得10
54秒前
科研通AI5应助budingman采纳,获得10
54秒前
科研通AI5应助budingman采纳,获得10
55秒前
科研通AI5应助budingman采纳,获得10
55秒前
科研通AI5应助budingman采纳,获得10
55秒前
科研通AI5应助budingman采纳,获得10
55秒前
Orange应助科研通管家采纳,获得10
56秒前
FashionBoy应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
顾矜应助科研通管家采纳,获得10
56秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295