Learning Dual-view User Representations for Enhanced Sequential Recommendation

计算机科学 可解释性 偏爱 用户建模 推荐系统 对偶(语法数字) 情报检索 因子(编程语言) 图形 人工智能 机器学习 计算机用户满意度 人机交互 理论计算机科学 用户体验设计 用户界面 用户界面设计 数学 程序设计语言 艺术 文学类 操作系统 统计
作者
Lyuxin Xue,Deqing Yang,Shuoyao Zhai,Yuxin Li,Yanghua Xiao
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:5
标识
DOI:10.1145/3572028
摘要

Sequential recommendation (SR) aims to predict a user’s next interacted item given his/her historical interactions. Most existing sequential recommendation systems model user preferences only with item-level representations, where a user’s interaction sequence are often modeled with sequential or graph-based method to infer the user’s sequential interaction pattern. However, since a user’s preference factors may vary over time, the user modeling on item-level could hardly represent the user’s preference precisely and sufficiently, resulting in suboptimal recommendation performance. In addition, the recommendation results based on the item-level user representations lack the interpretability of preference factors. To address these problems, we propose a novel SR model with dual-view user representations in this paper, namely DUVRec, where a user’s preference is learned based on the representations of two distinct views, i.e., item view and factor view . Specifically, the item-view user representation is learned as the previous SR models to encode the user preference of item level, while the factor-view user representation is learned by an coarse-grained graph embedding method to explicitly represent the user in terms of preference factors. As a result, such dual-view user representations are more comprehensive than that in the previous SR models, leading to enhanced SR performance. Furthermore, we design a contrastive learning strategy to achieve mutual complementation between these two views. Our extensive experiments upon three benchmark datasets justify DUVRec’s superior performance over the state-of-the-art SR models, including the advantage of the dual-view contrastive learning. In addition, DUVRec’s capability of providing explanations on recommendation results is also demonstrated through some specific case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
wanci应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
1秒前
谨慎枫叶发布了新的文献求助10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
爱吃冬瓜完成签到,获得积分10
1秒前
乐观的天问完成签到,获得积分10
2秒前
夺命倩倩儿完成签到,获得积分20
2秒前
3秒前
4秒前
啦啦啦完成签到,获得积分10
5秒前
5秒前
赵mz发布了新的文献求助30
6秒前
夏尔完成签到,获得积分10
7秒前
8秒前
谨慎枫叶完成签到,获得积分20
8秒前
waerteyang发布了新的文献求助10
9秒前
Ywd发布了新的文献求助10
9秒前
yangg完成签到,获得积分10
10秒前
天天完成签到,获得积分10
10秒前
liherong完成签到,获得积分10
12秒前
TS发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
一瓣橘子完成签到,获得积分10
15秒前
yls123完成签到,获得积分10
15秒前
drew完成签到,获得积分0
16秒前
17秒前
白枫完成签到 ,获得积分10
17秒前
CL完成签到,获得积分10
18秒前
illusion完成签到,获得积分10
18秒前
Ethan发布了新的文献求助10
18秒前
开朗冬灵完成签到 ,获得积分10
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831845
求助须知:如何正确求助?哪些是违规求助? 3373989
关于积分的说明 10483052
捐赠科研通 3093927
什么是DOI,文献DOI怎么找? 1703212
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423