亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wake prediction of a fully coupled floating wind turbine using dynamic mode decomposition and bidirectional long short-term memory method

作者
Xiaodi Wu,Jiaqi Li,Wenhao Lu,Jiahao Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (11)
标识
DOI:10.1063/5.0291098
摘要

Floating offshore wind farms require rapid, accurate wake predictions to support control and layout optimization, yet fully coupled large-eddy simulations (LES) remain prohibitively expensive. This study proposes an integrated combining LES, dynamic mode decomposition (DMD), and bidirectional long short-term memory (BiLSTM) workflow for short-term wake forecasting around floating offshore wind turbines. First, LES coupled with the MoorDyn dynamic-mooring model resolves six degrees of freedom platform motions for the offshore code comparison collaboration continuation-DeepCwind semi-submersible floating wind turbine under combined wind-wave-current loading. DMD compresses the resulting flow fields into a set of spatial modes associated with distinct frequencies, and a BiLSTM network learns the temporal evolution of the leading coefficients. The framework is benchmarked on canonical cylinder flow and then applied to the floating wind turbine. Retaining the first 27 DMD modes captures >98% of wake energy, while the BiLSTM achieves mean absolute and root-mean-square errors below 1% and 1.5%, respectively, over a 5 s prediction horizon (one rotor revolution), with R2 > 0.96. Compared with full LES cases, the surrogate achieves an order-of-magnitude reduction in computational cost without compromising key wake features such as velocity deficit recovery and vortex shedding dynamics. The proposed DMD-BiLSTM model offers a physics-informed, real-time capable tool for wake prediction, providing a physics-informed surrogate that supports advanced control strategies and provides high-fidelity input for dense farm layout optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
jiaxiangxia完成签到 ,获得积分10
9秒前
10秒前
11秒前
放逐发布了新的文献求助10
13秒前
14秒前
6666发布了新的文献求助10
21秒前
放逐完成签到,获得积分20
23秒前
23秒前
酷波er应助Gryphon采纳,获得10
29秒前
46秒前
55秒前
Gryphon发布了新的文献求助10
59秒前
1分钟前
KYTQQ完成签到 ,获得积分10
1分钟前
舒适的雁风完成签到,获得积分10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
matrixu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助飞快的孱采纳,获得10
1分钟前
1分钟前
liuliu发布了新的文献求助30
1分钟前
liuliu完成签到,获得积分20
2分钟前
小马甲应助刘国建郭菱香采纳,获得10
2分钟前
满意人英完成签到,获得积分10
2分钟前
星辰大海应助Iusolite采纳,获得10
2分钟前
2分钟前
执着艳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
拼搏太阳发布了新的文献求助10
3分钟前
刘国建郭菱香完成签到,获得积分10
3分钟前
3分钟前
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Doc发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470116
求助须知:如何正确求助?哪些是违规求助? 4573050
关于积分的说明 14337956
捐赠科研通 4499966
什么是DOI,文献DOI怎么找? 2465503
邀请新用户注册赠送积分活动 1453845
关于科研通互助平台的介绍 1428427