清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Balancing System Service Quality and Resilience for Urban Rail Networks: Preventive Train Timetabling with Disruptions

作者
Zehai Liu,Jiateng Yin,Andrea D’Ariano,Lixing Yang,Tao Tang,Xing Chen
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981251368318
摘要

In the urban rail transit (URT) systems of large cities, the headway and following distance between successive trains have been compressed as much as possible to maximize corridor capacity and meet high passenger demand during peak hours. However, excessively short headways often reduce the overall resilience of URT networks, leading to severe safety incidents during disruptions. Therefore, enhancing the resilience of URT networks while maintaining high service quality for passengers is crucial. In contrast to most existing studies, which focus on rescheduling train timetables after disruption happens, our study investigates a preventive train timetabling approach considering the uncertainties of potential disruptive events. Specifically, we formulate the problem into a two-stage stochastic optimization model. In the first stage, we determined the optimal planned schedule to achieve a good trade-off between the resilience of a URT network for each potential disruption scenario and the travel demand of passengers. The second stage involves determining the optimal schedule after disruptions occur, which aims to evacuate passengers stranded in the event of disruptions as quickly as possible. Additionally, our formula incorporates bus bridging services to the most congested stations, thereby further improving the resilience of the URT network to disruption. Finally, the real-world case studies based on the operational data of Beijing Metro Line 5 are conducted to verify the effectiveness of the proposed model. The results demonstrate that the resilience of the URT network to disruptions can be significantly enhanced by the preventive train timetabling approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gary完成签到 ,获得积分10
2秒前
2秒前
zenabia完成签到 ,获得积分10
2秒前
xiaofeixia完成签到 ,获得积分10
6秒前
苗笑卉完成签到,获得积分10
6秒前
wushuimei完成签到 ,获得积分10
14秒前
满意麦片完成签到 ,获得积分10
17秒前
racill完成签到 ,获得积分10
46秒前
shhoing应助科研通管家采纳,获得10
50秒前
yong完成签到 ,获得积分10
56秒前
1分钟前
zw完成签到,获得积分10
1分钟前
wayne完成签到 ,获得积分10
1分钟前
义气莫茗完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
动人的诗霜完成签到 ,获得积分10
1分钟前
135完成签到 ,获得积分10
2分钟前
2分钟前
小西完成签到 ,获得积分10
2分钟前
数乱了梨花完成签到 ,获得积分0
2分钟前
foreverchoi完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
井冬完成签到 ,获得积分10
3分钟前
3分钟前
田様应助郑阔采纳,获得10
3分钟前
wang5945完成签到 ,获得积分10
3分钟前
又壮了完成签到 ,获得积分10
3分钟前
wuludie完成签到,获得积分0
3分钟前
shhoing应助wuludie采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
笑傲完成签到,获得积分10
4分钟前
溆玉碎兰笑完成签到 ,获得积分10
4分钟前
4分钟前
迅速的幻雪完成签到 ,获得积分10
4分钟前
似水流年完成签到 ,获得积分10
4分钟前
满意的伊完成签到,获得积分10
5分钟前
lod完成签到,获得积分10
5分钟前
5分钟前
天工开物发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549545
求助须知:如何正确求助?哪些是违规求助? 4634750
关于积分的说明 14635120
捐赠科研通 4576336
什么是DOI,文献DOI怎么找? 2509661
邀请新用户注册赠送积分活动 1485489
关于科研通互助平台的介绍 1456819