FewM-HGCL : Few-Shot Malware Variants Detection Via Heterogeneous Graph Contrastive Learning

恶意软件 计算机科学 人工智能 图形 机器学习 基本事实 情报检索 理论计算机科学 计算机安全
作者
Chen Liu,Bo Li,Jun Zhao,Ziyang Zhen,Xudong Liu,Qunshi Zhang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:16
标识
DOI:10.1109/tdsc.2022.3216902
摘要

Malware variant attacks have been becoming serious threats in the Internet ecosystem. However, prior arts on malware variants detection over-rely on the supervised learning methods to identify the malware variants using a large number of labeled samples, resulting in their inability to detect the few-shot malware without sufficient samples and ground-truth labels. In this paper, we propose FewM-HGCL, a self-supervised Few -shot M alware variants detection framework based on H eterogeneous G raph C ontrastive L earning, which models the execution behavior of each malware variant as a heterogeneous graph and performs graph instance-based discrimination. Particularly, FewM-HGCL first models the execution behavior of each malware variant with a fine-grained attribute heterogeneous graph, which effectively depicts the interactive relationships between malware objects ( e.g. , API, process, etc). Then three types of heterogeneous graph data augmentations are proposed, i.e. , API attribute masking, interaction enhancing, and meth-path sampling, to generate more robust positive and negative samples for each instance, incorporating semantic prior or structural prior, respectively. Afterward, FewM-HGCL utilizes heterogeneous graph contrastive learning to empower graph attention networks (GATs) to learn the graph-level representations for few-shot malware variants in a self-supervised manner. Experimental results show that the proposed FewM-HGCL on diverse datasets can achieve 70.47% $\sim$ 98.65% accuracy, which are 0.45% $\sim$ 8.46% improvements over previous state-of-the-art methods on the few-shot malware variants detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子宁发布了新的文献求助10
1秒前
heyheybaby发布了新的文献求助10
2秒前
4秒前
搜集达人应助杜儒采纳,获得10
4秒前
5秒前
大模型应助晃悠悠的可乐采纳,获得10
7秒前
10秒前
feihu发布了新的文献求助10
10秒前
11秒前
12秒前
ccccc完成签到,获得积分10
12秒前
GQ完成签到,获得积分10
12秒前
快乐藤椒堡完成签到 ,获得积分10
13秒前
张靖松发布了新的文献求助10
14秒前
cxy发布了新的文献求助10
15秒前
谦让的雪枫完成签到 ,获得积分10
16秒前
NexusExplorer应助heyheybaby采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
17秒前
Xhhaai应助科研通管家采纳,获得10
17秒前
17秒前
Hello应助科研通管家采纳,获得10
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
天天快乐应助h哈采纳,获得10
17秒前
Hilda007应助科研通管家采纳,获得10
17秒前
18秒前
Xhhaai应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
CAOHOU应助科研通管家采纳,获得10
18秒前
18秒前
打打应助科研通管家采纳,获得10
18秒前
Xhhaai应助科研通管家采纳,获得10
18秒前
18秒前
漂亮的秋天完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5794177
求助须知:如何正确求助?哪些是违规求助? 5753279
关于积分的说明 15488046
捐赠科研通 4920965
什么是DOI,文献DOI怎么找? 2649189
邀请新用户注册赠送积分活动 1596498
关于科研通互助平台的介绍 1550988