Edge-Guided Hyperspectral Image Compression With Interactive Dual Attention

计算机科学 高光谱成像 GSM演进的增强数据速率 人工智能 平滑的 数据压缩 计算机视觉 图像压缩 模式识别(心理学) 图像处理 图像(数学)
作者
Yuanyuan Guo,Yulong Tao,Yanwen Chong,Shaoming Pan,Miao Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:26
标识
DOI:10.1109/tgrs.2022.3233375
摘要

Compressing hyperspectral images (HSIs) into compact representations under the premise of ensuring high-quality reconstruction is an essential task in HSI processing. However, existing compression methods usually encode images by smoothing due to the low-frequency information occupying a prominent component in most images. Consequently, these methods fail to capture sufficient structural information, especially in low bit rates, often causing inferior reconstruction. To address this problem, we propose here an edge-guided hyperspectral compression network, called CENet, to realize high-quality reconstruction. To enhance the structural latent representation ability, the CENet model incorporates an edge extractor neural network into the compression architecture to guide compression optimization by the edge-guided loss. We propose an interactive dual attention module to selectively learn edge features, obtain the most effective edge structure, and avoid additional edge information redundancy at the same time. In the proposed CENet, the edge-guided loss and interactive dual attention module are combined to enhance the comprehensive structure of the latent representation. Concretely, interactive dual attention makes the edge extraction network focus only on moderate boundaries rather than on all edges, which enables savings on the bit rate cost and helps achieve a strong structural representation. As a result, the reconstruction quality is significantly improved. The extensive experiments on seven HSI datasets verify that our model can effectively raise the rate–distortion performance for HSIs of any type or resolution (e.g., yielding an average peak signal-to-noise ratio (PSNR) of 30.59 dB at 0.2382 bpppb, which exceeds the baseline for Chikusei by 10.99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猪完成签到,获得积分10
刚刚
乐乐应助3sigma采纳,获得10
刚刚
刚刚
欢呼万恶完成签到,获得积分10
1秒前
1秒前
胡兴发布了新的文献求助10
2秒前
2秒前
上官若男应助任性映秋采纳,获得10
2秒前
孙元完成签到,获得积分10
3秒前
筑梦之鱼完成签到,获得积分10
3秒前
Chillym发布了新的文献求助10
4秒前
teni驳回了ding应助
4秒前
5秒前
Orange应助幽默的宝莹采纳,获得10
5秒前
科研通AI6应助官官采纳,获得10
5秒前
钙离子发布了新的文献求助10
5秒前
6秒前
好毕业鸭发布了新的文献求助10
6秒前
酷炫的海云完成签到,获得积分10
7秒前
Hhhhhhhh完成签到 ,获得积分10
7秒前
黄登锋发布了新的文献求助10
7秒前
CipherSage应助胡兴采纳,获得10
9秒前
9秒前
朱安南发布了新的文献求助10
10秒前
xxwyj发布了新的文献求助10
13秒前
现代发布了新的文献求助10
14秒前
上官若男应助白茶泡泡球采纳,获得10
15秒前
黄登锋完成签到,获得积分10
16秒前
Mengdi完成签到,获得积分10
16秒前
16秒前
库里强完成签到,获得积分10
16秒前
跳跃衫完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
糖异生完成签到,获得积分10
20秒前
21秒前
21秒前
寂寞的诗云完成签到,获得积分10
21秒前
森森完成签到 ,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265