Deep Reinforcement Learning for Sequential Targeting

强化学习 收入 计算机科学 人工智能 可解释性 可扩展性 启发式 人口 时间范围 机器学习 经济 数学优化 数学 人口学 社会学 会计 数据库
作者
Wen Wang,Beibei Li,Xueming Luo,Xiaoyi Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (9): 5439-5460 被引量:14
标识
DOI:10.1287/mnsc.2022.4621
摘要

Deep reinforcement learning (DRL) has opened up many unprecedented opportunities in revolutionizing the digital marketing field. In this study, we designed a DRL-based personalized targeting strategy in a sequential setting. We show that the strategy is able to address three important challenges of sequential targeting: (1) forward looking (balancing between a firm’s current revenue and future revenues), (2) earning while learning (maximizing profits while continuously learning through exploration-exploitation), and (3) scalability (coping with a high-dimensional state and policy space). We illustrate this through a novel design of a DRL-based artificial intelligence (AI) agent. To better adapt DRL to complex consumer behavior dimensions, we proposed a quantization-based uncertainty learning heuristic for efficient exploration-exploitation. Our policy evaluation results through simulation suggest that the proposed DRL agent generates 26.75% more long-term revenues than can the non-DRL approaches on average and learns 76.92% faster than the second fastest model among all benchmarks. Further, in order to better understand the potential underlying mechanisms, we conducted multiple interpretability analyses to explain the patterns of learned optimal policy at both the individual and population levels. Our findings provide important managerial-relevant and theory-consistent insights. For instance, consecutive price promotions at the beginning can capture price-sensitive consumers’ immediate attention, whereas carefully spaced nonpromotional “cooldown” periods between price promotions can allow consumers to adjust their reference points. Additionally, consideration of future revenues is necessary from a long-term horizon, but weighing the future too much can also dampen revenues. In addition, analyses of heterogeneous treatment effects suggest that the optimal promotion sequence pattern highly varies across the consumer engagement stages. Overall, our study results demonstrate DRL’s potential to optimize these strategies’ combination to maximize long-term revenues. This paper was accepted by Kartik Hosanagar, information systems. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4621 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sailo驳回了852应助
1秒前
无私小小完成签到,获得积分10
5秒前
zsx完成签到,获得积分10
5秒前
昭谏发布了新的文献求助10
9秒前
11秒前
霍师傅发布了新的文献求助30
18秒前
Dskelf完成签到,获得积分10
19秒前
隐形曼青应助学习爱我采纳,获得10
20秒前
汉堡包应助阮大帅气采纳,获得10
21秒前
科研通AI2S应助霍师傅采纳,获得10
22秒前
abbb发布了新的文献求助10
27秒前
31秒前
sym关闭了sym文献求助
33秒前
Ghiocel完成签到,获得积分10
34秒前
踏实一斩完成签到,获得积分10
35秒前
bqss发布了新的文献求助10
37秒前
程风破浪发布了新的文献求助10
37秒前
wenbo完成签到,获得积分10
38秒前
lewis_xl完成签到,获得积分10
38秒前
归海含烟完成签到,获得积分10
39秒前
42秒前
46秒前
Yolo完成签到 ,获得积分10
48秒前
绝尘发布了新的文献求助10
49秒前
shijin完成签到,获得积分10
50秒前
赘婿应助绝尘采纳,获得10
53秒前
sym关闭了sym文献求助
55秒前
56秒前
梦游游游完成签到,获得积分10
56秒前
秋裤批发完成签到 ,获得积分10
59秒前
1分钟前
lijianguo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
奇拉维特完成签到 ,获得积分10
1分钟前
星辰大海应助abbb采纳,获得10
1分钟前
科研小兔发布了新的文献求助10
1分钟前
踏实一斩发布了新的文献求助10
1分钟前
Sailo发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549