努塞尔数
雷诺数
人工神经网络
传热
涡流发生器
计算机科学
传热系数
微通道
人工智能
机器学习
涡流
机械
物理
湍流
作者
Alişan Gönül,Andaç Batur Çolak,Nurullah Kayacı,Abdülkerim Okbaz,Ahmet Selim Dalkılıç
出处
期刊:Kerntechnik
[De Gruyter]
日期:2023-01-04
卷期号:88 (1): 80-99
被引量:10
标识
DOI:10.1515/kern-2022-0075
摘要
Abstract Because of the prompt improvements in Micro-Electro-Mechanical Systems, thermal management necessities have altered paying attention to the compactness and high energy consumption of actual electronic devices in industry. In this study, 625 data sets obtained numerically according to the change of five different geometric parameters and Reynolds numbers for delta winglet type vortex generator pairs placed in a microchannel were utilized. Four dissimilar artificial neural network models were established to predict the heat transfer characteristics in a microchannel with innovatively oriented vortex generators in the literature. Friction factor, Nusselt number, and performance evaluation criteria were considered to explore the heat transfer characteristics. Different neuron numbers were determined in the hidden layer of each of the models in which the Levethenberg–Marquardt training algorithm was benefited as the training algorithm. The predicted values were checked against the target data and empirical correlations. The coefficient of determination values calculated for each machine learning model were found to be above 0.99. According to obtained results, the designed artificial neural networks can provide high prediction performance for each data set and have higher prediction accuracy compared to empirical correlations. All data predicted by machine learning models were collected within the range of ±3% deviation bands, whereas the majority of the estimated data by empirical correlations dispersed within ±20% ones. For that reason, a full evaluation of the estimation performance of artificial neural networks versus empirical correlations data is enabled to fill a gap in the literature as one of the uncommon works.
科研通智能强力驱动
Strongly Powered by AbleSci AI