Prediction of heat transfer characteristics in a microchannel with vortex generators by machine learning

努塞尔数 雷诺数 人工神经网络 传热 涡流发生器 计算机科学 传热系数 微通道 人工智能 机器学习 涡流 机械 物理 湍流
作者
Alişan Gönül,Andaç Batur Çolak,Nurullah Kayacı,Abdülkerim Okbaz,Ahmet Selim Dalkılıç
出处
期刊:Kerntechnik [De Gruyter]
卷期号:88 (1): 80-99 被引量:10
标识
DOI:10.1515/kern-2022-0075
摘要

Abstract Because of the prompt improvements in Micro-Electro-Mechanical Systems, thermal management necessities have altered paying attention to the compactness and high energy consumption of actual electronic devices in industry. In this study, 625 data sets obtained numerically according to the change of five different geometric parameters and Reynolds numbers for delta winglet type vortex generator pairs placed in a microchannel were utilized. Four dissimilar artificial neural network models were established to predict the heat transfer characteristics in a microchannel with innovatively oriented vortex generators in the literature. Friction factor, Nusselt number, and performance evaluation criteria were considered to explore the heat transfer characteristics. Different neuron numbers were determined in the hidden layer of each of the models in which the Levethenberg–Marquardt training algorithm was benefited as the training algorithm. The predicted values were checked against the target data and empirical correlations. The coefficient of determination values calculated for each machine learning model were found to be above 0.99. According to obtained results, the designed artificial neural networks can provide high prediction performance for each data set and have higher prediction accuracy compared to empirical correlations. All data predicted by machine learning models were collected within the range of ±3% deviation bands, whereas the majority of the estimated data by empirical correlations dispersed within ±20% ones. For that reason, a full evaluation of the estimation performance of artificial neural networks versus empirical correlations data is enabled to fill a gap in the literature as one of the uncommon works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助cc采纳,获得10
1秒前
marketing发布了新的文献求助10
3秒前
3秒前
hhp完成签到,获得积分10
3秒前
YW完成签到 ,获得积分10
3秒前
4秒前
茶茶完成签到,获得积分10
4秒前
changping应助liugm采纳,获得10
6秒前
panpan完成签到,获得积分10
6秒前
共享精神应助茶茶采纳,获得10
8秒前
8秒前
烟花应助橙汁采纳,获得10
9秒前
22完成签到 ,获得积分10
10秒前
10秒前
白石杏完成签到,获得积分10
11秒前
12秒前
Banana完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
嘻嘻发布了新的文献求助10
13秒前
孔乙己完成签到,获得积分10
13秒前
keleboys完成签到 ,获得积分10
13秒前
15秒前
烟花应助庭树采纳,获得10
16秒前
16秒前
zzz发布了新的文献求助10
17秒前
猴王完成签到,获得积分10
17秒前
Ava应助tleeny采纳,获得10
18秒前
SYX发布了新的文献求助10
19秒前
醒醒完成签到 ,获得积分10
19秒前
19秒前
maggiexjl完成签到,获得积分10
20秒前
猫猫猫发布了新的文献求助10
20秒前
TMUEH_FCL完成签到,获得积分10
21秒前
aabbb完成签到,获得积分10
21秒前
22秒前
xbx关注了科研通微信公众号
22秒前
英姑应助owlhealth采纳,获得10
23秒前
华仔应助胡萝卜icc采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904