CMID: A Unified Self-Supervised Learning Framework for Remote Sensing Image Understanding

计算机科学 人工智能 特征学习 卷积神经网络 深度学习 分割 机器学习 模式识别(心理学) 目标检测
作者
Dilxat Muhtar,Xueliang Zhang,Pengfeng Xiao,Zhenshi Li,Feng Long Gu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:27
标识
DOI:10.1109/tgrs.2023.3268232
摘要

Self-supervised learning (SSL) has gained widespread attention in the remote sensing (RS) and earth observation (EO) communities owing to its ability to learn task-agnostic representations without human-annotated labels. Nevertheless, most existing RS SSL methods are limited to learning either global semantic separable or local spatial perceptible representations. We argue that this learning strategy is suboptimal in the realm of RS, since the required representations for different RS downstream tasks are often varied and complex. In this study, we proposed a unified SSL framework that is better suited for RS images representation learning. The proposed SSL framework, Contrastive Mask Image Distillation (CMID), is capable of learning representations with both global semantic separability and local spatial perceptibility by combining contrastive learning (CL) with masked image modeling (MIM) in a self-distillation way. Furthermore, our CMID learning framework is architecture-agnostic, which is compatible with both convolutional neural networks (CNN) and vision transformers (ViT), allowing CMID to be easily adapted to a variety of deep learning (DL) applications for RS understanding. Comprehensive experiments have been carried out on four downstream tasks (i.e. scene classification, semantic segmentation, object-detection, and change detection) and the results show that models pre-trained using CMID achieve better performance than other state-of-the-art SSL methods on multiple downstream tasks. The code and pre-trained models will be made available at https://github.com/NJU-LHRS/official-CMID to facilitate SSL research and speed up the development of RS images DL applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰青发布了新的文献求助10
1秒前
1秒前
思敏发布了新的文献求助10
2秒前
过时的电灯胆完成签到 ,获得积分10
2秒前
小马完成签到,获得积分20
4秒前
4秒前
今后应助杰青采纳,获得10
5秒前
视野胤完成签到,获得积分10
6秒前
内向绿竹应助lam采纳,获得10
6秒前
manan发布了新的文献求助10
6秒前
视野胤发布了新的文献求助10
8秒前
ws123发布了新的文献求助10
9秒前
大眼睛的草莓完成签到,获得积分10
10秒前
杰青完成签到,获得积分20
10秒前
我是老大应助土豆金采纳,获得10
11秒前
Orange应助思敏采纳,获得10
11秒前
独特的土豆完成签到,获得积分10
11秒前
11秒前
我是老大应助登山人采纳,获得10
12秒前
桐桐应助zuoyingying采纳,获得10
12秒前
wxq关闭了wxq文献求助
12秒前
14秒前
14秒前
15秒前
0514gr完成签到,获得积分10
15秒前
xixixi发布了新的文献求助10
17秒前
张三发布了新的文献求助10
17秒前
山淮发布了新的文献求助10
18秒前
amwlsai完成签到,获得积分10
18秒前
Bgeelyu发布了新的文献求助10
19秒前
Lp完成签到 ,获得积分10
19秒前
22秒前
23秒前
MY完成签到,获得积分10
24秒前
cc0514gr完成签到,获得积分10
25秒前
26秒前
jeff完成签到,获得积分10
26秒前
27秒前
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732