清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for predicting neoadjuvant chemotherapy effectiveness using ultrasound radiomics features and routine clinical data of patients with breast cancer

无线电技术 医学 乳腺癌 化疗 癌症 新辅助治疗 放射科 肿瘤科 内科学
作者
Pu Zhou,Hongyan Qian,Pengfei Zhu,Jiangyuan Ben,Guifang Chen,Qiuyi Chen,Lingli Chen,Jia Chen,Ying He
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14: 1485681-1485681 被引量:4
标识
DOI:10.3389/fonc.2024.1485681
摘要

Background This study explores the clinical value of a machine learning (ML) model based on ultrasound radiomics features of primary foci, combined with clinicopathologic factors to predict the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) for patients with breast cancer (BC). Method We retrospectively analyzed ultrasound images and clinical information from 231 participants with BC who received NAC. These patients were randomly assigned to training and validation cohorts. Tumor regions of interest (ROI) were delineated, and radiomics features were extracted. Z-score normalization, Pearson correlation analysis, and the least absolute shrinkage selection operator (LASSO) were utilized for further screening ultrasound radiomics and clinical features. Univariate and multivariate logistic regression analysis were performed to identify the CFs that were independently associated with pCR. We compared 10 ML models based on radiomics features: support vector machine (SVM), logistic regression (LR), random forest, extra trees (ET), naïve Bayes (NB), k-nearest neighbor (KNN), multilayer perceptron (MLP), gradient boosting ML (GBM), light GBM (LGBM), and adaptive boost (AB). Diagnostic performance was evaluated using the receiver operating characteristic (ROC) area under the curve (AUC), accuracy, sensitivity, and specificity, and the Rad score was calculated. Subsequently, construction of clinical predictive models and Rad score joint clinical predictive models using ML algorithms for optimal diagnostic performance. The diagnostic process of the ML model was visualized and analyzed using SHapley Additive exPlanation (SHAP). Results Out of 231 participants with BC, 98 (42.42%) achieved pCR, and 133 (57.58%) did not. Twelve radiomics features were identified, with the GBM model demonstrating the best predictive performance (AUC of 0.851, accuracy of 0.75, sensitivity of 0.821, and specificity of 0.698). The clinical feature prediction model using the GBM algorithm had an AUC of 0.819 and an accuracy of 0.739. Combining the Rad score with clinical features in the GBM model resulted in superior predictive performance (AUC of 0.939 and an accuracy of 0.87). SHAP analysis indicated that participants with a high Rad score, PR-negative, ER-negative and human epidermal growth factor receptor-2 (HER-2) positive were more possibly to reach pCR. Based on the decision curve analysis, it was shown that the combined model of GBM provided higher clinical benefits. Conclusion The GBM model based on ultrasound radiomics features and routine clinical date of BC patients had high performance in predicting pCR. SHAP analysis provided a clear explanation for the prediction results of the GBM model, revealing that patients with a high Rad score, PR-negative status, ER-negative status and HER-2-positive status are more likely to achieve pCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达克赛德完成签到 ,获得积分10
17秒前
gsji完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
alex12259完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
gege完成签到,获得积分10
4分钟前
harden9159完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
7分钟前
zxcvvbb1001完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
Nicole完成签到,获得积分20
8分钟前
面汤完成签到 ,获得积分10
9分钟前
清脆的大开完成签到,获得积分10
9分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
11分钟前
紫熊发布了新的文献求助10
11分钟前
朴实的鹤发布了新的文献求助30
12分钟前
紫熊完成签到,获得积分10
12分钟前
朴实的鹤完成签到,获得积分10
12分钟前
披着羊皮的狼完成签到 ,获得积分10
13分钟前
刘刘完成签到 ,获得积分10
14分钟前
Bella完成签到 ,获得积分10
14分钟前
Luna爱科研完成签到 ,获得积分10
14分钟前
研友_nxw2xL完成签到,获得积分10
15分钟前
muriel完成签到,获得积分0
15分钟前
如歌完成签到,获得积分10
15分钟前
科研通AI2S应助科研通管家采纳,获得10
15分钟前
15分钟前
三明治发布了新的文献求助10
16分钟前
三明治完成签到,获得积分10
16分钟前
megac完成签到,获得积分10
16分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516185
求助须知:如何正确求助?哪些是违规求助? 4609279
关于积分的说明 14514700
捐赠科研通 4545874
什么是DOI,文献DOI怎么找? 2490961
邀请新用户注册赠送积分活动 1472760
关于科研通互助平台的介绍 1444569