AI protocol for retrieving protein dynamic structures from two-dimensional infrared spectra

蛋白质动力学 计算机科学 生物系统 折叠(DSP实现) 蛋白质折叠 蛋白质结构 人工智能 算法 生物 物理 核磁共振 工程类 电气工程
作者
Sheng Ye,Lvshuai Zhu,Zhicheng Zhao,Fan Wu,Жипенг Ли,Binbin Wang,Kai Zhong,Changyin Sun,Shaul Mukamel,Jun Jiang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (7)
标识
DOI:10.1073/pnas.2424078122
摘要

Understanding the dynamic evolution of protein structures is crucial for uncovering their biological functions. Yet, real-time prediction of these dynamic structures remains a significant challenge. Two-dimensional infrared (2DIR) spectroscopy is a powerful tool for analyzing protein dynamics. However, translating its complex, low-dimensional signals into detailed three-dimensional structures is a daunting task. In this study, we introduce a machine learning-based approach that accurately predicts dynamic three-dimensional protein structures from 2DIR descriptors. Our method establishes a robust “spectrum-structure” relationship, enabling the recovery of three-dimensional structures across a wide variety of proteins. It demonstrates broad applicability in predicting dynamic structures along different protein folding trajectories, spanning timescales from microseconds to milliseconds. This approach also shows promise in identifying the structures of previously uncharacterized proteins based solely on their spectral descriptors. The integration of AI with 2DIR spectroscopy offers insights and represents a significant advancement in the real-time analysis of dynamic protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Aaron采纳,获得10
刚刚
谨慎天问完成签到,获得积分20
2秒前
2秒前
Akim应助dd采纳,获得10
4秒前
4秒前
脑洞疼应助晴枫3648采纳,获得10
4秒前
夏秋完成签到,获得积分10
5秒前
丘比特应助ao采纳,获得10
5秒前
5秒前
打打应助乐观的镜子采纳,获得10
6秒前
Lucas应助IDHNAPHO采纳,获得10
6秒前
6秒前
7秒前
YOLO完成签到,获得积分10
9秒前
奋斗的鞅发布了新的文献求助10
9秒前
HS完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
小蘑菇应助机灵雨采纳,获得10
10秒前
yalin完成签到,获得积分10
11秒前
DENG发布了新的文献求助10
12秒前
13秒前
javaxixi发布了新的文献求助10
14秒前
15秒前
18秒前
18秒前
感动归尘完成签到,获得积分10
18秒前
Aaron发布了新的文献求助10
19秒前
奋斗的蜗牛应助激流勇进采纳,获得10
19秒前
11发布了新的文献求助10
21秒前
张泽崇发布了新的文献求助10
24秒前
CodeCraft应助xixihaha采纳,获得10
25秒前
华仔应助Ab采纳,获得10
26秒前
27秒前
香蕉觅云应助XMUh采纳,获得20
30秒前
javaxixi完成签到,获得积分20
31秒前
31秒前
机灵雨发布了新的文献求助10
32秒前
35秒前
烟花应助Aaron采纳,获得10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842