亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Revolutionizing the construction industry by cutting edge artificial intelligence approaches: a review

人工神经网络 均方误差 人工智能 机器学习 计算机科学 工程类 统计 数学
作者
Eberhard Gill,Daniela Cardone,Alessia Amelio
出处
期刊:Frontiers in artificial intelligence [Frontiers Media SA]
卷期号:7: 1474932-1474932 被引量:6
标识
DOI:10.3389/frai.2024.1474932
摘要

The construction industry is rapidly adopting Industry 4.0 technologies, creating new opportunities to address persistent environmental and operational challenges. This review focuses on how Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are being leveraged to tackle these issues. It specifically explores AI’s role in predicting air pollution, improving material quality, monitoring worker health and safety, and enhancing Cyber-Physical Systems (CPS) for construction. This study evaluates various AI and ML models, including Artificial Neural Networks (ANNs) and Support Vector Machines SVMs, as well as optimization techniques like whale and moth flame optimization. These tools are assessed for their ability to predict air pollutant levels, improve concrete quality, and monitor worker safety in real time. Research papers were also reviewed to understand AI’s application in predicting the compressive strength of materials like cement mortar, fly ash, and stabilized clay soil. The performance of these models is measured using metrics such as coefficient of determination ( R 2 ), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Furthermore, AI has shown promise in predicting and reducing emissions of air pollutants such as PM2.5, PM10, NO 2 , CO, SO 2 , and O 3 . In addition, it improves construction material quality and ensures worker safety by monitoring health indicators like standing postures, electrocardiogram, and galvanic skin response. It is also concluded that AI technologies, including Explainable AI and Petri Nets, are also making advancements in CPS for the construction industry. The models’ performance metrics indicate they are well-suited for real-time construction operations. The study highlights the adaptability and effectiveness of these technologies in meeting current and future construction needs. However, gaps remain in certain areas of research, such as broader AI integration across diverse construction environments and the need for further validation of models in real-world applications. Finally, this research underscores the potential of AI and ML to revolutionize the construction industry by promoting sustainable practices, improving operational efficiency, and addressing safety concerns. It also provides a roadmap for future research, offering valuable insights for industry stakeholders interested in adopting AI technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
我睡觉的时候不困完成签到 ,获得积分10
5秒前
TonyLee完成签到,获得积分10
6秒前
飘逸碧琴完成签到,获得积分10
8秒前
悠哉发布了新的文献求助10
10秒前
11秒前
罗伊黄发布了新的文献求助10
16秒前
16秒前
zhang1发布了新的文献求助10
17秒前
摸鱼大王完成签到 ,获得积分10
18秒前
22秒前
beiye发布了新的文献求助10
25秒前
科研通AI6应助悠哉采纳,获得10
26秒前
齐多达完成签到 ,获得积分10
30秒前
桐桐应助科研通管家采纳,获得10
34秒前
BowieHuang应助科研通管家采纳,获得10
34秒前
beiye完成签到,获得积分10
40秒前
依米完成签到,获得积分10
43秒前
绮烟完成签到 ,获得积分10
51秒前
迷路的成危完成签到,获得积分10
51秒前
完美世界应助SKYE采纳,获得10
56秒前
Jiawei完成签到,获得积分10
56秒前
57秒前
烟花应助zhang1采纳,获得10
1分钟前
1分钟前
1分钟前
猫猫发布了新的文献求助10
1分钟前
1分钟前
三泥完成签到,获得积分10
1分钟前
1分钟前
1分钟前
SKYE发布了新的文献求助10
2分钟前
2分钟前
冬日空虚完成签到,获得积分20
2分钟前
2分钟前
iiii发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
KNOW完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534156
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582228
捐赠科研通 4562402
什么是DOI,文献DOI怎么找? 2500167
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450832