Molecular Feature-Based Classification of Retroperitoneal Liposarcoma: A Prospective Cohort Study

特征(语言学) 前瞻性队列研究 脂肪肉瘤 医学 队列 肿瘤科 放射科 人工智能 内科学 计算机科学 病理 肉瘤 哲学 语言学
作者
Mengmeng Xiao,Xiangji Li,Fanqin Bu,Shixiang Ma,Xiaohan Yang,Jun Chen,Yu Zhao,Ferdinando Cananzi,Chenghua Luo,Li Min
出处
期刊:eLife [eLife Sciences Publications Ltd]
标识
DOI:10.7554/elife.100887
摘要

Background: Retroperitoneal liposarcoma (RPLS) is a critical malignant disease with various clinical outcomes. However, the molecular heterogeneity of RPLS was poorly elucidated, and few biomarkers were proposed to monitor its progression. Methods: RNA sequencing was performed on a training cohort of 88 RPLS patients to identify dysregulated genes and pathways using clusterprofiler. The GSVA algorithm was utilized to assess signaling pathways levels in each sample, and unsupervised clustering was employed to distinguish RPLS subtypes. Differentially expressed genes (DEGs) between RPLS subtypes were identified to construct a simplified dichotomous clustering via nonnegative matrix factorization. The feasibility of this classification was validated in a separate validation cohort (n=241) using immunohistochemistry (IHC) from the Retroperitoneal SArcoma Registry (RESAR). The study is registered with ClinicalTrials.gov under number NCT03838718. Results: Cell cycle, DNA damage & repair, and Metabolism were identified as the most aberrant biological processes in RPLS, enabling the division of RPLS patients into two distinct subtypes with unique molecular signatures, tumor microenvironment, clinical features and outcomes (overall survival, OS and disease-free survival, DFS). A simplified RPLS classification based on representative biomarkers (LEP and PTTG1) demonstrated high accuracy (AUC>0.99), with patients classified as LEP+ and PTTG1- showing lower aggressive pathological composition ratio and fewer surgery times, along with better OS (HR=0.41, P <0.001) and DFS (HR=0.60, P =0.005). Conclusions: Our study provided an ever-largest gene expression landscape of RPLS and established an IHC-based molecular classification that was clinically relevant and cost-effective for guiding treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘎嘎乐完成签到,获得积分10
刚刚
英俊的铭应助isjj采纳,获得10
1秒前
王霖发布了新的文献求助10
1秒前
nnd发布了新的文献求助10
1秒前
1秒前
ynchendt完成签到,获得积分10
1秒前
热情若翠完成签到,获得积分10
1秒前
健忘蘑菇完成签到,获得积分10
2秒前
2秒前
虚幻盼晴完成签到,获得积分10
2秒前
AAACharlie完成签到,获得积分20
2秒前
kittian发布了新的文献求助10
2秒前
susu完成签到 ,获得积分10
2秒前
hhh完成签到,获得积分10
3秒前
3秒前
kai_完成签到,获得积分10
3秒前
陈醒醒完成签到,获得积分10
3秒前
m123完成签到,获得积分10
4秒前
ncxxxxx发布了新的文献求助10
4秒前
牛蛙发布了新的文献求助10
4秒前
4秒前
gggguo完成签到,获得积分10
4秒前
所所应助Alan采纳,获得30
4秒前
5秒前
zsy完成签到,获得积分10
5秒前
李浩发布了新的文献求助10
5秒前
远方发布了新的文献求助10
5秒前
6秒前
刘荣圣发布了新的文献求助10
6秒前
6秒前
搜集达人应助黑煤球采纳,获得10
6秒前
呐呐完成签到,获得积分10
7秒前
zkai完成签到,获得积分10
7秒前
独特的兔子完成签到,获得积分10
7秒前
淡然柚子发布了新的文献求助10
7秒前
rml发布了新的文献求助10
7秒前
1111发布了新的文献求助10
7秒前
Luke完成签到,获得积分10
8秒前
mate完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473074
求助须知:如何正确求助?哪些是违规求助? 3932208
关于积分的说明 12199211
捐赠科研通 3586845
什么是DOI,文献DOI怎么找? 1971671
邀请新用户注册赠送积分活动 1009576
科研通“疑难数据库(出版商)”最低求助积分说明 903292