Venomics AI: a computational exploration of global venoms for antibiotic discovery

抗菌剂 抗菌肽 毒液 计算生物学 药物发现 生物 抗生素 鲍曼不动杆菌 蝎子毒 细菌 生物信息学 生物化学 微生物学 遗传学 蝎子 铜绿假单胞菌
作者
Changge Guan,Marcelo D. T. Torres,Sufen Li,César de la Fuente‐Núñez
标识
DOI:10.1101/2024.12.17.628923
摘要

The relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials. Venom-derived peptides, in particular, hold promise for antibiotic discovery due to their evolutionary diversity and unique pharmacological profiles. In this study, we mined comprehensive global venomics datasets to identify new antimicrobial candidates. Using machine learning, we explored 16,123 venom proteins, generating 40,626,260 venom-encrypted peptides (VEPs). Using APEX, a deep learning model combining a peptide-sequence encoder with neural networks for antimicrobial activity prediction, we identified 386 VEPs structurally and functionally distinct from known antimicrobial peptides. Our analyses showed that these VEPs possess high net charge and elevated hydrophobicity, characteristics conducive to bacterial membrane disruption. Structural studies revealed considerable conformational flexibility, with many VEPs transitioning to α-helical conformations in membrane-mimicking environments, indicative of their antimicrobial potential. Of the 58 VEPs selected for experimental validation, 53 displayed potent antimicrobial activity. Mechanistic assays indicated that VEPs primarily exert their effects through bacterial membrane depolarization, mirroring AMP-like mechanisms. In vivo studies using a mouse model of Acinetobacter baumannii infection demonstrated that lead VEPs significantly reduced bacterial burdens without notable toxicity. This study highlights the value of venoms as a resource for new antibiotics. By integrating computational approaches and experimental validation, venom-derived peptides emerge as promising candidates to combat the global challenge of antibiotic resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助tututu采纳,获得10
刚刚
谣谣完成签到,获得积分10
刚刚
读书酱完成签到 ,获得积分10
1秒前
2秒前
卷卷完成签到,获得积分10
6秒前
田様应助胡胡采纳,获得10
6秒前
白斯特发布了新的文献求助30
7秒前
zzz关闭了zzz文献求助
8秒前
8秒前
薇薇发布了新的文献求助10
8秒前
yuyingzheng完成签到,获得积分10
11秒前
舒心飞珍完成签到,获得积分10
13秒前
qiqi发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助彩色的蓝天采纳,获得10
14秒前
CodeCraft应助舒心的白开水采纳,获得10
15秒前
万能图书馆应助chao采纳,获得200
16秒前
16秒前
16秒前
龚仕杰完成签到 ,获得积分10
16秒前
薇薇完成签到,获得积分10
19秒前
19秒前
于骁应助甜蜜的冰枫采纳,获得10
20秒前
frank发布了新的文献求助10
25秒前
小鱼儿发布了新的文献求助10
25秒前
扶我起来写论文完成签到 ,获得积分10
26秒前
27秒前
27秒前
搜集达人应助科研小菜鸟采纳,获得30
27秒前
CipherSage应助yongzaizhuigan采纳,获得10
28秒前
30秒前
34秒前
甜蜜的甜瓜完成签到,获得积分10
34秒前
群青完成签到,获得积分20
35秒前
领导范儿应助Shuo采纳,获得10
39秒前
40秒前
乐观友菱完成签到,获得积分20
43秒前
kk99123应助frank采纳,获得10
43秒前
Lizzy发布了新的文献求助10
44秒前
jgpiao发布了新的文献求助10
45秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084066
求助须知:如何正确求助?哪些是违规求助? 3623173
关于积分的说明 11493721
捐赠科研通 3337751
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903649
科研通“疑难数据库(出版商)”最低求助积分说明 821768