Application of MRI-based tumor heterogeneity analysis for identification and pathologic staging of breast phyllodes tumors

叶状瘤 医学 乳腺肿瘤 肿瘤异质性 乳房磁振造影 鉴定(生物学) 放射科 乳腺癌 病理 肿瘤科 内科学 乳腺摄影术 癌症 生物 植物
作者
Liang Yue,Qingyu Li,Jiahao Li,Lan Zhang,Ying Wang,Binjie Wang,Changfu Wang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:117: 110325-110325
标识
DOI:10.1016/j.mri.2025.110325
摘要

To explore the application value of MRI-based imaging histology and deep learning model in the identification and classification of breast phyllodes tumors. Seventy-seven patients diagnosed as breast phyllodes tumors and fibroadenomas by pathological examination were retrospectively analyzed, and traditional radiomics features, subregion radiomics features, and deep learning features were extracted from MRI images, respectively. The features were screened and modeled using variance selection method, statistical test, random forest importance ranking method, Spearman correlation analysis, least absolute shrinkage and selection operator (LASSO). The efficacy of each model was assessed using the subject operating characteristic (ROC) curve, The DeLong test was used to assess the differences in the AUC values of the different models, and the clinical benefit of each model was assessed using the decision curve (DCA), and the predictive accuracy of the model was assessed using the calibration curve (CCA). Among the constructed models for classification of breast phyllodes tumors, the fusion model (AUC: 0.97) had the best diagnostic efficacy and highest clinical benefit. The traditional radiomics model (AUC: 0.81) had better diagnostic efficacy compared with subregion radiomics model (AUC: 0.70). De-Long test, there is a statistical difference between the fusion model traditional radiomics model, and subregion radiomics model in the training group. Among the models constructed to distinguish phyllodes tumors from fibroadenomas in the breast, the TDT_CIDL model (AUC: 0.974) had the best predictive efficacy and the highest clinical benefit. De-Long test, the TDT_CI combination model was statistically different from the remaining five models in the training group. Traditional radiomics models, subregion radiomics models and deep learning models based on MRI sequences can help to differentiate benign from junctional phyllodes tumors, phyllodes tumors from fibroadenomas, and provide personalized treatment for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nan语完成签到,获得积分10
刚刚
刚刚
充电宝应助谦让元槐采纳,获得10
刚刚
NexusExplorer应助学术纣王采纳,获得10
刚刚
SciGPT应助常温采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
乱世发布了新的文献求助10
2秒前
科研通AI6应助科研菜鸟采纳,获得10
3秒前
华仔应助大气凝云采纳,获得10
3秒前
3秒前
ding应助xxxk采纳,获得10
4秒前
fei完成签到 ,获得积分10
4秒前
隐形曼青应助Sylvie采纳,获得10
5秒前
AZQ完成签到,获得积分10
6秒前
6秒前
lsy完成签到,获得积分10
6秒前
Wang完成签到,获得积分10
7秒前
魔女完成签到,获得积分10
8秒前
今后应助小燕子采纳,获得10
8秒前
香蕉觅云应助娜娜lalala采纳,获得10
8秒前
Rlin发布了新的文献求助10
8秒前
boshuaili完成签到,获得积分10
8秒前
AZQ发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
科目三应助山头人二号采纳,获得10
10秒前
小二郎应助小唐采纳,获得10
10秒前
淡定从凝发布了新的文献求助10
10秒前
11秒前
11秒前
waitamoment完成签到,获得积分10
11秒前
11秒前
11秒前
小马甲应助凡美采纳,获得10
11秒前
ding应助小a采纳,获得10
11秒前
宫冷雁发布了新的文献求助20
11秒前
11秒前
11秒前
12秒前
思源应助xinanan采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274594
求助须知:如何正确求助?哪些是违规求助? 3803726
关于积分的说明 11919277
捐赠科研通 3450561
什么是DOI,文献DOI怎么找? 1892156
邀请新用户注册赠送积分活动 942991
科研通“疑难数据库(出版商)”最低求助积分说明 846724