已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Establishment of a Daqu Grade Classification Model Based on Computer Vision and Machine Learning

人工智能 支持向量机 随机森林 F1得分 计算机科学 分割 模式识别(心理学) 特征(语言学) 逻辑回归 精确性和召回率 回归 机器学习 数学 统计 语言学 哲学
作者
M. G. Zhao,Chaoyue Han,T. Xue,Chao Ren,Xiao Nie,Xu Jing,Hong Hao,Qifang Liu,Liyan Jia
出处
期刊:Foods [MDPI AG]
卷期号:14 (4): 668-668 被引量:2
标识
DOI:10.3390/foods14040668
摘要

The grade of Daqu significantly influences the quality of Baijiu. To address the issues of high subjectivity, substantial labor costs, and low detection efficiency in Daqu grade evaluation, this study focused on light-flavor Daqu and proposed a two-layer classification structure model based on computer vision and machine learning. Target images were extracted using three image segmentation methods: threshold segmentation, morphological fusion, and K-means clustering. Feature factors were selected through methods including mean decrease accuracy based on random forest (RF-MDA), recursive feature elimination (RFE), LASSO regression, and ridge regression. The Daqu grade evaluation model was constructed using support vector machine (SVM), logistic regression (LR), random forest (RF), k-nearest neighbor (KNN), and a stacking model. The results indicated the following: (1) In terms of image segmentation performance, the morphological fusion method achieved an accuracy, precision, recall, F1-score, and AUC of 96.67%, 95.00%, 95.00%, 0.95, and 0.96, respectively. (2) For the classification of Daqu-P, Daqu-F, and Daqu-S, RF models performed best, achieving an accuracy, precision, recall, F1-score, and AUC of 96.67%, 97.50%, 97.50%, 0.97, and 0.99, respectively. (3) In distinguishing Daqu-P from Daqu-F, the combination of the RF-MDA method and the stacking model demonstrated the best performance, with an accuracy, precision, recall, F1-score, and AUC of 90.00%, 94.44%, 85.00%, 0.89, and 0.95, respectively. This study provides theoretical and technical support for efficient and objective Daqu grade evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助风趣的梦露采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
GooodMa完成签到,获得积分10
3秒前
寒冷白亦完成签到 ,获得积分10
6秒前
NexusExplorer应助uuuu采纳,获得10
9秒前
10秒前
长情的雅绿完成签到,获得积分10
10秒前
12秒前
肖肖肖完成签到 ,获得积分10
13秒前
uikymh完成签到 ,获得积分0
15秒前
17秒前
17秒前
GDL发布了新的文献求助10
17秒前
想不出来完成签到 ,获得积分10
19秒前
xmf发布了新的文献求助10
20秒前
20秒前
小马甲应助红墨采纳,获得10
20秒前
BowieHuang应助长情的雅绿采纳,获得10
25秒前
GooodMa关注了科研通微信公众号
26秒前
26秒前
奔跑石小猛完成签到,获得积分10
27秒前
27秒前
ucas大菠萝完成签到,获得积分10
30秒前
善学以致用应助GDL采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得50
35秒前
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
35秒前
田様应助科研通管家采纳,获得10
35秒前
三泥完成签到,获得积分10
35秒前
Lucas应助羊角包采纳,获得10
37秒前
37秒前
云无意发布了新的文献求助10
38秒前
213435完成签到,获得积分10
39秒前
RW完成签到,获得积分10
40秒前
43秒前
璐璐完成签到 ,获得积分10
43秒前
齐天大圣应助xmf采纳,获得10
43秒前
风趣的梦露完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714084
求助须知:如何正确求助?哪些是违规求助? 5220378
关于积分的说明 15272661
捐赠科研通 4865670
什么是DOI,文献DOI怎么找? 2612250
邀请新用户注册赠送积分活动 1562416
关于科研通互助平台的介绍 1519611