Predicting lane change maneuver and associated collision risks based on multi-task learning

任务(项目管理) 碰撞 毒物控制 计算机科学 伤害预防 运输工程 模拟 工程类 航空学 计算机安全 物理医学与康复 医疗急救 医学 系统工程
作者
Liu Yang,Jike Zhang,Nengchao Lyu,Qianxi Zhao
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:209: 107830-107830
标识
DOI:10.1016/j.aap.2024.107830
摘要

The lane-changing (LC) maneuver of vehicles significantly impacts highway traffic safety. Therefore, proactively predicting LC maneuver and associated collision risk is of paramount importance. However, most of the previous LC risk prediction research overlooks the prediction of LC maneuver, limiting its practical utility. Furthermore, the effectiveness of LC maneuver recognition tends to be moderate as the prediction horizon extends. To fill the gaps, this paper proposes a multi-task learning model that simultaneously predicts the probability of LC maneuver, LC risk level, and time-to-lane-change (TTLC), while further analyzing the intrinsic correlation between LC maneuver and LC risk. The model consists of a Convolutional Neural Network (CNN) and two Long Short-Term Memory networks (LSTM). The CNN is employed to extract and fuse shared features from the dynamic driving environment, while one LSTM is dedicated to estimating the probability of LC maneuver and TTLC, and the other LSTM focuses on estimating the LC risk level. Evaluation of the proposed method on the HighD dataset demonstrates its excellent performance. It can almost predict all LC maneuvers within 2 s before the vehicle crosses lane boundaries, with an 80% recall rate for high-risk LC levels. Even 3.6 s before crossing lane boundaries, the model can still predict approximately 95% of LC maneuvers. The use of the multi-task learning strategy enhances the model's understanding of traffic scenarios and its prediction robustness. LC risk analysis based on the HighD dataset shows that the risk distribution and influencing factors for left and right lane changes differ. In right lane changes, collision risks primarily arise from the leading and following vehicles in the current lane, while in left lane changes, collision risks mainly stem from the leading vehicle in the current lane and the following vehicle in the target lane. The proposed approach can be applied to advanced driver assistance systems (ADAS) to reliably and early identify LC during highway driving, while correcting potentially dangerous LC maneuvers, ensuring driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ziyuwang发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
5秒前
辞忧发布了新的文献求助10
5秒前
yekindar完成签到,获得积分10
5秒前
大个应助小学生熊大采纳,获得10
6秒前
买了束花完成签到,获得积分10
6秒前
充电宝应助WYY采纳,获得10
6秒前
6秒前
7秒前
QWERT完成签到,获得积分10
7秒前
NikoOO完成签到,获得积分10
7秒前
石翎完成签到,获得积分10
8秒前
8秒前
8秒前
KjLumos发布了新的文献求助30
9秒前
科研通AI5应助小岳同学采纳,获得10
9秒前
10秒前
10秒前
SYLH应助欢喜雪瑶采纳,获得10
10秒前
ding应助林中白狼采纳,获得10
10秒前
Dr_an发布了新的文献求助10
10秒前
斌爽3发布了新的文献求助30
10秒前
11秒前
轻松的老鼠完成签到,获得积分10
11秒前
感动澜完成签到,获得积分10
11秒前
11秒前
李健应助ZLY采纳,获得10
12秒前
小学生熊大完成签到,获得积分10
12秒前
13秒前
13秒前
啊怙纲完成签到 ,获得积分10
13秒前
zhyzzz发布了新的文献求助10
13秒前
lalala发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809673
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369497
捐赠科研通 3070479
什么是DOI,文献DOI怎么找? 1686340
邀请新用户注册赠送积分活动 810900
科研通“疑难数据库(出版商)”最低求助积分说明 766433