Enhancing Drilling Equipment Reliability: Deep Learning for Predicting Failure Time and Real-Time Anomaly Detection

异常检测 可靠性(半导体) 可靠性工程 计算机科学 钻探 异常(物理) 人工智能 机器学习 实时计算 工程类 机械工程 功率(物理) 物理 量子力学 凝聚态物理
作者
Sarafudheen M. Tharayil,Marah M. Alrammah,Maria A. Alghamdi,Fatimah E. Aljohar,William B. Contreras Otalvora
标识
DOI:10.2118/221928-ms
摘要

Abstract Predict drilling equipment's failure time and real-time anomaly detection play crucial roles in ensuring the seamless Oil and Gas wells drilling operations. In this study, we delve into the application of neural network-based machine learning techniques specifically tailored for these tasks in drilling. Our primary objectives encompass diagnosing equipment health states, detecting anomalies in real-time, and predicting remaining useful life (RUL). To address these challenges, we implement a novel combination of neural network architectures, including convolutional layers, Long Short-Term Memory (LSTM) cells, and attention layers. By meticulously training our model on historical data using carefully selected deep-learning hyperparameters, we tackle the unique characteristics of drilling equipment data. The resulting neural network predicts total lifetime and RUL based on historical input. Our LSTM model achieved an accuracy of 74.03%, given the complexity and novelty of the dataset, these results establish a strong benchmark for future research. This improvement results from hyperparameter tuning and optimized network architectures. Additionally, accurate anomaly detection and minimized unscheduled downtime of 14% demonstrate potential cost savings for oilfield operators. By identifying potential failures in advance, our approach allows efficient scheduling of maintenance activities. Field engineers express satisfaction with our approach, validating its effectiveness. Our research introduces novel aspects to drilling equipment maintenance. Through empirical validation, we rigorously test our approach using real-world drilling sensor data, ensuring robustness and reliability. This instills confidence in industry practitioners. Furthermore, our intuitive real-time anomaly detection system enhances drilling safety, efficiency, and cost savings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
3秒前
4秒前
melonp发布了新的文献求助10
5秒前
SciGPT应助shishuang采纳,获得10
5秒前
登登发布了新的文献求助10
6秒前
拉扣发布了新的文献求助30
6秒前
Meikinn发布了新的文献求助10
7秒前
飘逸蘑菇完成签到 ,获得积分10
7秒前
直率的心情完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助50
9秒前
王定春完成签到,获得积分10
10秒前
科研通AI2S应助nihaoxjm采纳,获得10
10秒前
13秒前
慕青应助shishuang采纳,获得10
14秒前
14秒前
飞虎完成签到,获得积分10
17秒前
Akim应助VESong采纳,获得10
18秒前
19秒前
physic发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
棕榈发布了新的文献求助10
21秒前
852应助sinlar采纳,获得10
21秒前
量子星尘发布了新的文献求助30
21秒前
李爱国应助VESong采纳,获得10
22秒前
桐桐应助激情的不弱采纳,获得10
22秒前
24秒前
土豪的龙猫应助大树采纳,获得10
24秒前
茉莉花发布了新的文献求助10
25秒前
英俊的铭应助shishuang采纳,获得10
26秒前
123发布了新的文献求助10
27秒前
27秒前
29秒前
29秒前
老艺人完成签到,获得积分10
29秒前
nnmmuu完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432