已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A modeling method of wide random forest multi-output soft sensor with attention mechanism for quality prediction of complex industrial processes

软传感器 可解释性 随机森林 计算机科学 特征(语言学) 一般化 数据挖掘 质量(理念) 机器学习 人工智能 变量(数学) 生产(经济) 过程(计算) 数学 语言学 经济 宏观经济学 哲学 数学分析 操作系统 认识论
作者
Yin Wan,Ding Liu,Jun-Chao Ren
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102255-102255 被引量:13
标识
DOI:10.1016/j.aei.2023.102255
摘要

Complex industrial production processes often involve multiple product quality indicators that are interrelated. There exists a complex nonlinear mapping relationship between the operational input feature variables and multiple output target quality variables, making it difficult to accurately model through first-principle models. In order to fully capture the complex relationship between measurable variables and difficult-to-measure quality variables, and achieve accurate prediction of multiple output variables to meet the needs of practical industrial sites, this paper proposes a broad random forest-based multi-output soft sensor modeling method based on the idea of attention mechanism derived from the concept of broad learning systems. This method comprehensively considers the dynamic impact of different feature variables on the target quality indicators in actual production processes. The attention mechanism assists the soft sensor model in capturing contextual information better when dealing with long sequences, with a focus on the relevant parts related to the current task. Additionally, the interpretable random forest algorithm is employed as the weight estimator for the basic feature learning unit of Broad-based learning, enabling regression modeling of multiple target quality variables. The use of Broad-based random forest improves the model's learning ability, interpretability, and generalization capability. To validate the reliability of the proposed method, it was applied to real industrial cases. The results demonstrated that the multi-output quality variable prediction performance of the proposed soft sensor outperforms existing soft sensors in terms of prediction accuracy. This indicates promising industrial application prospects for the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zenglongying发布了新的文献求助10
刚刚
1秒前
1秒前
加湿器发布了新的文献求助10
3秒前
daisy应助unowhoiam采纳,获得20
4秒前
dt发布了新的文献求助10
5秒前
乌苏完成签到 ,获得积分10
6秒前
沉静酸奶完成签到,获得积分10
7秒前
英俊的铭应助王路飞采纳,获得10
9秒前
星空棒棒糖完成签到,获得积分10
10秒前
hhh完成签到 ,获得积分10
12秒前
12秒前
13秒前
小樊同学发布了新的文献求助10
16秒前
18秒前
丁元英完成签到,获得积分10
21秒前
科研通AI5应助zhangfengyan采纳,获得10
22秒前
23秒前
鱼儿发布了新的文献求助30
23秒前
草木发布了新的文献求助10
24秒前
完美大神完成签到 ,获得积分10
24秒前
夏紊完成签到 ,获得积分10
25秒前
28秒前
酷波er应助草木采纳,获得10
32秒前
浪客完成签到 ,获得积分10
32秒前
34秒前
sdfsdf发布了新的文献求助10
34秒前
大模型应助HonamC采纳,获得10
37秒前
38秒前
memory发布了新的文献求助10
39秒前
光盘行动发布了新的文献求助20
39秒前
深情安青应助鱼儿采纳,获得10
40秒前
那兰完成签到,获得积分10
41秒前
43秒前
yaorunhua发布了新的文献求助10
43秒前
科研通AI5应助苏苏苏采纳,获得10
44秒前
那兰发布了新的文献求助10
44秒前
45秒前
45秒前
zhj发布了新的文献求助20
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436