Is the Jaumann Stress Rate Applicable? — Discussions on Choosing Proper Rate Expressions of a Finite Deformation Constitutive Model

本构方程 柯西弹性材料 切线刚度矩阵 有限元法 切线模量 应变率 变形(气象学) 压力(语言学) 数学 结构工程 材料科学 刚度矩阵 模数 几何学 工程类 复合材料 语言学 哲学
作者
Peidong Lei,Shun Meng,Jian Wu,Zhanli Liu,Haroon Imtiaz,Huawei Feng,Junjie Zhou,Bin Liu
出处
期刊:International Journal of Applied Mechanics [World Scientific]
卷期号:15 (10) 被引量:1
标识
DOI:10.1142/s1758825123500977
摘要

The rate form constitutive expression plays an important role in finite deformation theory and is widely used in the finite element method (FEM) software. However, the choice of objective stress and strain rates in constitutive expressions has caused many controversies. This paper aims to clarify these controversies by distinguishing the related concepts: constitutive behavior, constitutive model and constitutive expression, and discuss the influence of constitutive model choices and constitutive expression choices separately. As a certain constitutive model may correspond to many different rate form constitutive expressions, the conversion relationships among them are derived, which can help clarify many controversies. First, it is proven that three different stress–strain curves in the controversial simple shear example actually correspond to three constitutive models. For each constitutive model, the corresponding different rate form constitutive expressions yield consistent calculation results. We also demonstrate that the applicability of a constitutive model is completely independent of the choice of objective stress rates in the constitutive expressions. Second, we find that for FEM simulation, the element tangent stiffness matrix can serve as an indicator to evaluate the validity of different constitutive expressions and their corresponding FEM formulations. Moreover, even though non-work-conjugate stress-strain rates are adopted, such as the Jaumann stress rate/deformation rate, different rate form constitutive expressions can correctly reflect the constitutive model with the proper tangent modulus tensors. All these conclusions have been verified by examples. For convenience, we recommend using the constitutive expressions in terms of the second Piola–Kirchhoff stress versus Green’s strain tensor and Truesdell stress rate versus deformation rate for experimental measurements and FEM simulations. Of course, other objective stress rates are all applicable and have no effect on the calculation results as long as the correct conversion relationships are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助暴富采纳,获得10
刚刚
久久发布了新的文献求助10
刚刚
1秒前
ike_1991完成签到,获得积分10
1秒前
coolru发布了新的文献求助10
2秒前
丸子完成签到,获得积分10
2秒前
3秒前
3秒前
陈陌陌发布了新的文献求助10
4秒前
wjw发布了新的文献求助10
4秒前
HEAUBOOK应助小s采纳,获得10
4秒前
顾矜应助郭振宇采纳,获得10
4秒前
西贝完成签到,获得积分10
4秒前
步愁发布了新的文献求助10
4秒前
5秒前
自由宛筠发布了新的文献求助10
5秒前
感性的大炮完成签到,获得积分10
6秒前
6秒前
Sky36001发布了新的文献求助20
6秒前
海不扬波完成签到,获得积分10
6秒前
yangou发布了新的文献求助10
7秒前
Aston完成签到,获得积分10
7秒前
neilqin完成签到,获得积分10
8秒前
简单完成签到,获得积分10
8秒前
南墙以南完成签到 ,获得积分10
8秒前
zwz1015发布了新的文献求助10
9秒前
9秒前
airyletter完成签到,获得积分10
10秒前
xiaokl发布了新的文献求助10
10秒前
10秒前
11秒前
粗犷的怜梦完成签到 ,获得积分10
11秒前
星辰大海发布了新的文献求助10
11秒前
11秒前
科研通AI5应助liang采纳,获得10
12秒前
搜集达人应助勤恳的越泽采纳,获得10
12秒前
13秒前
13秒前
13秒前
李健应助gao采纳,获得30
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907