ODQN-Net: Optimized Deep Q Neural Networks for Disease Prediction Through Tongue Image Analysis Using Remora Optimization Algorithm

人工智能 计算机科学 人工神经网络 模式识别(心理学) 弹性网正则化 舌头 集合(抽象数据类型) 图像(数学) 机器学习 图像处理 特征选择 医学 病理 程序设计语言
作者
S. V. N. Sreenivasu,Priyadarsan Patra,Vasujadevi Midasala,G.S.N. Murthy,Krishna Chaitanya Janapati,Jagdish Kumar,Pravesh Kumar
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:11 (6): 452-465
标识
DOI:10.1089/big.2023.0014
摘要

Tongue analysis plays the major role in disease type prediction and classification according to Indian ayurvedic medicine. Traditionally, there is a manual inspection of tongue image by the expert ayurvedic doctor to identify or predict the disease. However, this is time-consuming and even imprecise. Due to the advancements in recent machine learning models, several researchers addressed the disease prediction from tongue image analysis. However, they have failed to provide enough accuracy. In addition, multiclass disease classification with enhanced accuracy is still a challenging task. Therefore, this article focuses on the development of optimized deep q-neural network (DQNN) for disease identification and classification from tongue images, hereafter referred as ODQN-Net. Initially, the multiscale retinex approach is introduced for enhancing the quality of tongue images, which also acts as a noise removal technique. In addition, a local ternary pattern is used to extract the disease-specific and disease-dependent features based on color analysis. Then, the best features are extracted from the available features set using the natural inspired Remora optimization algorithm with reduced computational time. Finally, the DQNN model is used to classify the type of diseases from these pretrained features. The obtained simulation performance on tongue imaging data set proved that the proposed ODQN-Net resulted in superior performance compared with state-of-the-art approaches with 99.17% of accuracy and 99.75% and 99.84% of F1-score and Mathew's correlation coefficient, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮金毛发布了新的文献求助10
刚刚
zhong完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
完美世界应助meng采纳,获得10
2秒前
2秒前
平常亦凝发布了新的文献求助10
3秒前
3秒前
南风知我意完成签到,获得积分10
5秒前
本凡发布了新的文献求助10
5秒前
7秒前
积极江舟发布了新的文献求助10
7秒前
李海涵发布了新的文献求助10
7秒前
7秒前
yyymmma发布了新的文献求助10
7秒前
8秒前
科研通AI5应助icm采纳,获得10
9秒前
yb发布了新的文献求助10
10秒前
TaoJ发布了新的文献求助10
10秒前
10秒前
11秒前
学术蛔虫完成签到 ,获得积分10
11秒前
是咸鱼呀完成签到,获得积分10
12秒前
寒冷的咖啡完成签到,获得积分10
12秒前
日出发布了新的文献求助10
12秒前
LLLLL完成签到,获得积分10
13秒前
绝世冰淇淋完成签到 ,获得积分10
13秒前
大白完成签到 ,获得积分10
14秒前
KeLiang完成签到,获得积分10
15秒前
LLLLL发布了新的文献求助10
15秒前
wanci应助Luna采纳,获得10
16秒前
桐桐应助若俗人采纳,获得10
16秒前
斯寜应助本凡采纳,获得10
16秒前
ShawnLyu应助本凡采纳,获得10
16秒前
16秒前
yyymmma完成签到,获得积分10
16秒前
17秒前
18秒前
陈思思发布了新的文献求助20
19秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785