Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO<sub>2</sub> Reduction

还原(数学) 欧姆接触 光催化 材料科学 纳米颗粒 化学工程 纳米技术 化学 催化作用 工程类 数学 生物化学 几何学 图层(电子)
作者
Gaopeng Liu,Lina Li,Bin Wang,Ningjie Shan,Jintao Dong,Mengxia Ji,Wenshuai Zhu,Paul K. Chu,Jiexiang Xia,Huaming Li
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 202306041-202306041 被引量:5
标识
DOI:10.3866/pku.whxb202306041
摘要

Abstract: The continuous increase in the consumption of coal, oil, and natural gas has not only led to the depletion of unsustainable energy sources, but has also caused excessive CO2 emissions, thus resulting in serious energy crises and climate issues. In such a scenario, it is imperative to explore clean and sustainable energy conversion technologies to address the escalating energy demands and environmental crises. Photocatalytic CO2 conversion, inspired by natural photosynthesis, utilizes solar energy to convert CO2 and water into valuable chemicals. After decades of development, artificial photosynthesis has emerged as a green, cost-effective, and sustainable approach to achieving carbon neutrality. However, the challenges of low carrier separation efficiency and insufficient active sites in photocatalysts remain significant hurdles in achieving high-performance CO2 photoreduction. To address this challenge, the integration of metal nanoparticles with semiconductors to create an Ohmic junction can enhance electron-hole migration by the assist of interfacial electric field (IEF). In this study, an Ohmic junction photocatalyst is constructed by in situ formation of Bi nanoparticles on the surface of BiOCl nanosheets through a solvothermal process. The composition and morphology of the photocatalysts were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was employed to assess the light absorption performance of the photocatalyst. Transient photocurrent response, electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR) were utilized to evaluate the efficiency of electron-hole transfer. The distinct work function difference between Bi nanoparticles and BiOCl nanosheets leads to favorable charge transfer characteristics within the formed Ohmic junction, significantly improving the utilization efficiency of photogenerated carriers. Besides, the Bi nanoparticles serve as co-catalysts, enhancing the activation of inert CO2. As a result, the optimized Bi/BiOCl composite (Bi/BiOCl-2) exhibits enhanced generation rates of CO (34.31 µmol∙g−1) and CH4 (1.57 µmol g−1) during 4-hours of irradiation, which is 2.55 and 4.76 times compared to pristine BiOCl nanosheets, respectively. Isotope tracer experiments suggest that the obtained carbon-based products are generated through CO2 photoreduction in the presence of water molecule under irradiation. Moreover, in situ Fourier-transform infrared spectroscopy (in situ FTIR) results indicate the formation of *CHO, *CH3O, b-CO32−, m-CO32−, HCO−3, HCOOH, *COOH, and HCOO− species during the CO2 reduction process and a possible mechanism for CO2 photoreduction into CO and CH4 is proposed based on these findings. After 25-hours of CO2 photoreduction reaction, the yields of CO and CH4 continue to increase. Furthermore, the stability of the prepared material is confirmed by XRD pattern, XPS analysis, and TEM image. These outcomes underscore an effective strategy for constructing advanced photocatalysts tailored for high-performance solar-driven CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的笑阳完成签到,获得积分20
1秒前
香蕉觅云应助LeezZZZ采纳,获得10
10秒前
11秒前
student完成签到 ,获得积分10
13秒前
晓宇发布了新的文献求助10
15秒前
太阳完成签到 ,获得积分10
17秒前
18秒前
球球尧伞耳完成签到,获得积分10
22秒前
Xiang发布了新的文献求助30
23秒前
今后应助俏皮的一一采纳,获得10
25秒前
轻松的书南完成签到 ,获得积分10
28秒前
29秒前
31秒前
Xiang完成签到,获得积分20
32秒前
尘默完成签到,获得积分10
34秒前
QIQI发布了新的文献求助10
34秒前
盐汽水完成签到 ,获得积分10
36秒前
不会科研的混子完成签到 ,获得积分10
36秒前
LeezZZZ发布了新的文献求助10
37秒前
飞兰完成签到,获得积分10
41秒前
猩猩完成签到,获得积分10
41秒前
42秒前
43秒前
44秒前
bkagyin应助LeezZZZ采纳,获得10
44秒前
45秒前
jie发布了新的文献求助10
46秒前
日光下完成签到 ,获得积分10
48秒前
pluto应助xiaowentu采纳,获得10
48秒前
49秒前
Four_twos完成签到,获得积分10
49秒前
tt发布了新的文献求助10
49秒前
牛洋洋发布了新的文献求助10
50秒前
50秒前
jie完成签到,获得积分10
52秒前
李渤海发布了新的文献求助10
53秒前
李爱国应助和气生财君采纳,获得10
53秒前
LeezZZZ发布了新的文献求助10
57秒前
科研通AI2S应助偷乐采纳,获得30
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385