A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma

可解释性 胶质瘤 肿瘤科 胶质母细胞瘤 医学 机器学习 阶段(地层学) 内科学 替莫唑胺 人工智能 计算机科学 癌症研究 生物 古生物学
作者
Ze‐Sheng Li,Wei Wang,Hao Liang,Ying Li,Zhenyu Zhang,Lei Han
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:574: 216369-216369 被引量:5
标识
DOI:10.1016/j.canlet.2023.216369
摘要

Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5656发布了新的文献求助10
1秒前
1秒前
江小美发布了新的文献求助10
3秒前
4秒前
missa发布了新的文献求助10
4秒前
岁月轮回发布了新的文献求助10
5秒前
Cyrus发布了新的文献求助10
5秒前
kun应助Aizen采纳,获得10
9秒前
10秒前
西早07完成签到,获得积分10
10秒前
Newky发布了新的文献求助10
10秒前
小飞飞应助听闻墨笙采纳,获得10
11秒前
12秒前
不倦应助5656采纳,获得10
13秒前
扎心发布了新的文献求助10
14秒前
无奈皮卡丘完成签到 ,获得积分10
14秒前
虚拟的芾完成签到 ,获得积分10
14秒前
隐形曼青应助三金采纳,获得10
14秒前
原子完成签到,获得积分10
15秒前
莫之白完成签到,获得积分10
15秒前
16秒前
17秒前
missa完成签到,获得积分10
17秒前
leegawei关注了科研通微信公众号
18秒前
18秒前
GY完成签到,获得积分10
19秒前
19秒前
20秒前
一粟的粉r完成签到 ,获得积分10
20秒前
23秒前
baifeng应助影子1127采纳,获得10
23秒前
扎心发布了新的文献求助10
24秒前
风中的凝安完成签到,获得积分10
24秒前
蓝色芒果完成签到,获得积分10
25秒前
专注的可乐完成签到,获得积分10
26秒前
江小美完成签到,获得积分10
27秒前
友好羊应助追光采纳,获得10
27秒前
28秒前
传奇3应助风中的凝安采纳,获得20
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612