A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma

可解释性 胶质瘤 肿瘤科 胶质母细胞瘤 医学 机器学习 阶段(地层学) 内科学 替莫唑胺 人工智能 计算机科学 癌症研究 生物 古生物学
作者
Ze‐Sheng Li,Wei Wang,Hao Liang,Ying Li,Zhenyu Zhang,Lei Han
出处
期刊:Cancer Letters [Elsevier]
卷期号:574: 216369-216369 被引量:19
标识
DOI:10.1016/j.canlet.2023.216369
摘要

Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江666发布了新的文献求助10
刚刚
panpan完成签到,获得积分10
1秒前
AD应助斯文凡阳采纳,获得10
1秒前
香蕉觅云应助故梦采纳,获得10
1秒前
1秒前
Ava应助粗暴的海豚采纳,获得10
2秒前
机灵的幻灵完成签到 ,获得积分10
2秒前
kun发布了新的文献求助10
3秒前
3秒前
4秒前
安晓慧完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
LeiYu完成签到 ,获得积分10
5秒前
Yvette发布了新的文献求助10
5秒前
黄黄完成签到,获得积分0
6秒前
CipherSage应助lhOAQ采纳,获得10
6秒前
Roach完成签到,获得积分10
6秒前
7秒前
WGS完成签到,获得积分10
7秒前
爱虹遍野发布了新的文献求助10
7秒前
酷波er应助孙朱珠采纳,获得10
7秒前
逍遥游发布了新的文献求助10
8秒前
ZY完成签到,获得积分10
8秒前
8秒前
9秒前
拼搏麦片发布了新的文献求助10
9秒前
9秒前
mei完成签到,获得积分10
9秒前
zhaoty发布了新的文献求助10
10秒前
syr完成签到,获得积分10
11秒前
洗碗净完成签到,获得积分10
11秒前
所所应助子木采纳,获得10
11秒前
szh123发布了新的文献求助10
12秒前
情怀应助Evander采纳,获得10
12秒前
hey应助昏睡的蟠桃采纳,获得10
12秒前
yyy发布了新的文献求助10
12秒前
缔顶爱多相给zsh的求助进行了留言
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240